Crops ›› 2021, Vol. 37 ›› Issue (3): 51-56.doi: 10.16035/j.issn.1001-7283.2021.03.008

Previous Articles     Next Articles

Resistance and Molecular Identification to Powdery Mildew of Pea Germplasms in Sichuan

Xiang Chao1(), Sun Suli2, Zhu Zhendong2, Zong Xuxiao2(), Yang Tao2, Liu Rong2, Yang Mei1, Xian Dongfeng1, Yang Xiuyan1   

  1. 1Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-12-29 Revised:2021-01-29 Online:2021-06-15 Published:2021-06-22
  • Contact: Zong Xuxiao E-mail:xc2011cib@163.com;zongxuxiao@caas.cn

Abstract:

Powdery mildew caused by Erysiphe pisi D. C. is one of the most important diseases of pea. The most economical, effective and environmentally friendly way to control powdery mildew of pea is to plant resistant varieties. A total of 400 pea germplasm resources were identified for the resistance to powdery mildew under greenhouse conditions. At the same time, seven molecular markers linked to known powdery mildew resistance genes of pea were used for genotype identification. The results showed that among the 400 identified germplasms, eight accessions showed immunity, three accessions showed resistance, five accessions showed resistance-susceptibility separation, and the remaining 384 accessions were susceptible. Among the 16 resistant accessions, ten accessions were from different latitudes in central of Sichuan and the remaining six accessions were imported from abroad. Seven molecular markers divided the 400 germplasms into 39 marker genotypes and 16 resistant germplasms were divided into seven marker genotypes. The resistant resources and their marker genotypes described above could be effectively used for the breeding of pea resistant to powdery mildew.

Key words: Pea, Powdery mildew, Germplasm resources, Resistance identification

Table 1

Molecular markers for genotyping pea germplasms"

分子标记
Molecular
marker
引物序列
Primer sequence
退火温度
Annealing temperature (°C)
遗传距离
Genetic
distance (cM)
条带大小
Band
size (bp)
基因
Gene
来源文献
Reference
ScOPD-10650
F: GGTCTACACCTAAACAGTGTCCGT
R: GGTCTACACCTCATATCTTGATGA
58.0 2.1 650 er1 Timmerman等[17],Tiwari等[18]
ScOPE-161600
F: GGTGACTGTGGAATGACAAA
R: GGTGACTGTGACAATTCCAG
55.0 4.0±2.0 1600 er1 Tiwari等[18]
ScOPO-181200
F: CCCTCTCGCTATCCAATCC
R: CCTCTCGCTATCCGGTGTG
60.0 0.0 1200 Er1 Tiwari等[18]
ScOPX-04880
F: CCGCTACCGATGTTATGTTTG
R: CCGCTACCGAACTGGTTGGA
58.0 0.6 880 Er1 Srivastava等[19]
ScX17_1400
F: GGACCAAGCTCGGATCTTTC
R: GACACGGACCCAATGACATC
65.0 2.6 1400 er2 Katoch等[20]
SCW4637
F: CAGAAGCGGATGAGGCGGA
R: CAGAAGCGGATACAGTACTAAC
55.0 0.0 637 Er3 Fondevilla等[21]
SCAB1874
F: CCGTCGGTAGTAAACTA
R: CCGTCGGTAGCCACACCA
59.5 2.8 874 Er3 Fondevilla等[21]

Fig.1

Comparison of resistant, immune and susceptible plants"

Table 2

Sichuan resistant resources distribution"

名称
Name
编号
No.
抗性
Resistance
地点
Location
昭化麻-1 Zhaohuama-1 179 R/S 昭化
绵阳花Mianyanghua 209 R/S 绵阳
金堂黄麻-2 Jintanghuangma-2 329 I 金堂
大邑白豌豆Dayibaiwandou 382 I 大邑
眉山菜Meishancai 248 R/S 眉山
犍为大绿Qianweidalü 256 I 犍为
高县大麻-2 Gaoxiandama-2 168 R 高县
会理大菜豌Huilidacaiwan 100 R 会理
会理大白Huilidabai 98 R/S 会理
会理大白壳Huilidabaike 99 R/S 会理

Fig.2

Fragments amplified by seven SCAR markers linked to the powdery mildew resistant genes 369: Shijiaxiaocaiwan No.3, 370: Shijiatiancuiwan No.1-1, 371: Chengwan No.7, 372: Shijiadacaiwan No.1-2, 373: Shijiatiancuiwan No.1-2, 374: Chengwan No.8 (control), 375: Chengwan No.9, 376: Qingwandou, M: DL 2000 Marker"

Table 3

Number of accessions with amplified fragment of seven molecular markers"

标记
Marker
扩增出条带数
Number of accessions
with amplified fragment
占比
Proportion
(%)
基因
Gene
ScOPD-10650 365 91.25 er1
ScOPE-161600 334 83.50 er1
ScOPO-181200 350 87.50 Er1
ScOPX-04880 367 91.75 Er1
ScX17_1400 359 89.75 er2
SCW4637 88 22.00 Er3
SCAB1874 394 98.50 Er3

Fig.3

Cluster analysis of molecular marker genotyping of 400 pea germplasms resistance to powdery mildew G1-G39 represent 39 marker genotypes, the first number in bracket represents the number of resources, the second number represents the number of resistant resources, and the red line represents the presence of resistant resources"

[1] Faostat. . Data Crops. (2020-12-22)[2020-12-29]. http://www.fao.org/faostat/en/#data/QC.
[2] Warkentin T, Rashid K, Xue A . Fungicidal control of powdery mildew in field pea. Canadian Journal of Plant Science, 1996,76(4):933-935.
doi: 10.4141/cjps96-156
[3] Fondevilla S, Cubero J, Rubiales D . Confirmation that the Er3 gene,conferring resistance to Erysiphe pisi in pea,is a different gene from er1 and er2 genes. Plant Breeding, 2011,130(2):281-282.
doi: 10.1111/pbr.2011.130.issue-2
[4] Ghafoor A, McPhee K . Marker assisted selection (MAS) for developing powdery mildew resistant pea cultivars. Euphytica, 2012,186(3):593-607.
doi: 10.1007/s10681-011-0596-6
[5] Sun S, Fu H, Wang Z , et al. Discovery of a novel er1 allele conferring powdery mildew resistance in Chinese pea (Pisum sativum L.) landraces. PLoS ONE, 2016,11(1):e0147624.
doi: 10.1371/journal.pone.0147624
[6] Harland S . Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity, 1948,2(Pt 2):263-269.
doi: 10.1038/hdy.1948.15
[7] Heringa R, Norel A V, Tazelaar M . Resistance to powdery mildew (Erisyphe polygoni DC) in peas (Pisum sativum L.). Euphytica, 1969,18(2):163-169.
doi: 10.1007/BF00035687
[8] Fondevilla S, Carver T L W, Moreno M T , et al. Macroscopic and histological characterisation of genes er1 and er2 for powdery mildew resistance in pea. European Journal of Plant Pathology, 2006,115(3):309-321.
doi: 10.1007/s10658-006-9015-6
[9] Fondevilla S, Torres A M, Moreno M T , et al. Identification of a new gene for resistance to powdery mildew in Pisum fulvum,a wild relative of pea. Breeding Science, 2007,57(2):181-184.
doi: 10.1270/jsbbs.57.181
[10] Ondřej M, Dostálová R, Odstrčilová L . Response of Pisum sativum germplasm resistant to Erysiphe pisi to inoculation with Erysiphe baeumleri,a new pathogen of peas. Plant Protection Science, 2005(41):95-103.
[11] Attanayake R N, Glawe D A, Mcphee K E , et al. Erysiphe trifolii-a newly recognized powdery mildew pathogen of pea. Plant Pathology, 2010,59(4):712-720.
doi: 10.1111/ppa.2010.59.issue-4
[12] Fondevilla S, Chattopadhyay C, Khare N , et al. Erysiphe trifolii is able to overcome er1 and Er3,but not er2,resistance genes in pea. European Journal of Plant Pathology, 2013,136(3):557-563.
doi: 10.1007/s10658-013-0187-6
[13] Tiwari K R, Penner G A, Warkentin T D , et al. Pathogenic variation in Erysiphe pisi,the causal organism of powdery mildew of pea. Canadian Journal of Plant Pathology, 1997,19(3):267-271.
doi: 10.1080/07060669709500522
[14] Tiwari K R, Penner G A, Warkentin T D . Inheritance of powdery mildew resistance in pea. Canadian Journal of Plant Science, 1997,77(3):307-310.
doi: 10.4141/P96-157
[15] Fondevilla S, Rubiales D . Powdery mildew control in pea. A review. Agronomy for Sustainable Development, 2012,32(2):401-409.
doi: 10.1007/s13593-011-0033-1
[16] Sun S, Wang Z, Fu H , et al. Resistance to powdery mildew in the pea cultivar Xucai 1 is conferred by the gene er1. The Crop Journal, 2015,3(6):489-499.
doi: 10.1016/j.cj.2015.07.006
[17] Timmerman G M, Frew T J, Weeden N F , et al. Linkage analysis of er-1,a recessive Pisum sativum gene for resistance to powdery mildew fungus (Erysiphe pisi D.C.). Theoretical and Applied Genetics, 1994,88(8):1050-1055.
doi: 10.1007/BF00220815 pmid: 24186261
[18] Tiwari K, Penner G, Warkentin T . Identification of coupling and repulsion phase RAPD markers for powdery mildew resistance gene er-1 in pea. Genome, 1998,41(3):440-444.
doi: 10.1139/g98-014
[19] Srivastava R K, Mishra S K, Singh A K , et al. Development of a coupling-phase SCAR marker linked to the powdery mildew resistance gene ‘er1’ in pea (Pisum sativum L.). Euphytica, 2012,186(3):855-866.
doi: 10.1007/s10681-012-0650-z
[20] Katoch V, Sharma S, Pathania S , et al. Molecular mapping of pea powdery mildew resistance gene er2 to pea linkage group Ⅲ. Molecular Breeding, 2010,25(2):229-237.
doi: 10.1007/s11032-009-9322-7
[21] Fondevilla S, Rubiales D, Moreno M T , et al. Identification and validation of RAPD and SCAR markers linked to the gene Er3 conferring resistance to Erysiphe pisi DC in pea. Molecular Breeding, 2008,22(2):193-200.
doi: 10.1007/s11032-008-9166-6
[22] Kreplak J, Madoui M-A, Cápal P , et al. A reference genome for pea provides insight into legume genome evolution. Nature Genetics, 2019,51(9):1411-1422.
doi: 10.1038/s41588-019-0480-1
[23] Kulaeva O A, Zhernakov A I, Afonin A M , et al. Pea Marker Database (PMD) - A new online database combining known pea (Pisum sativum L.) gene-based markers. PLoS ONE, 2017,12(10):e0186713.
doi: 10.1371/journal.pone.0186713
[24] 彭化贤, 姚革, 贾瑞林 , 等. 豌豆抗白粉病资源鉴定研究. 西南农业大学学报, 1991(4):20-22.
[25] 曾亮, 李敏权, 杨晓明 . 豌豆种质资源白粉病抗性鉴定. 草原与草坪, 2012,32(4):35-38.
[26] 陆建英, 杨晓明, 王昶 , 等. 抗白粉病豌豆种质资源田间筛选. 植物保护, 2015(3):154-158.
[27] 王仲怡, 包世英, 段灿星 , 等. 豌豆抗白粉病资源筛选及分子鉴定. 作物学报, 2013,39(6):1030-1038.
[28] 付海宁, 孙素丽, 朱振东 , 等. 加拿大豌豆品种(系)抗白粉病表型和基因型鉴定. 植物遗传资源学报, 2014,15(5):1028-1033.
[29] Pavan S, Schiavulli A, Appiano M , et al. Pea powdery mildew er1 resistance is associated to loss-of-function mutations at a MLO homologous locus. Theoretical and Applied Genetics, 2011,123(8):1425-1431.
doi: 10.1007/s00122-011-1677-6
[30] Humphry M, Reinstaedler A, Ivanov S , et al. Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Molecular Plant Pathology, 2011,12(9):866-878.
doi: 10.1111/j.1364-3703.2011.00718.x pmid: 21726385
[31] Santo T, Rashkova M, Alabaça C , et al. The ENU-induced powdery mildew resistant mutant pea (Pisum sativum L.) lines S (er1mut1) and F (er1mut2) harbour early stop codons in the PsMLO1 gene. Molecular breeding, 2013,32(3):723-727.
doi: 10.1007/s11032-013-9889-x
[32] Sun S, Deng D, Wang Z , et al. A novel er1 allele and the development and validation of its functional marker for breeding pea (Pisum sativum L.) resistance to powdery mildew. Theoretical and Applied Genetics, 2016,129(5):909-919.
doi: 10.1007/s00122-016-2671-9
[33] 王仲怡, 付海宁, 孙素丽 , 等. 豌豆品系X9002抗白粉病基因鉴定. 作物学报, 2015,41(4):515-523.
[34] Liu S M, O'Brien L, Moore S G , et al. A single recessive gene confers effective resistance to powdery mildew of field pea grown in northern New South Wales. Australian Journal of Experimental Agriculture, 2003,43(4):373-378.
doi: 10.1071/EA01142
[35] Ek M, Eklund M, Von P R , et al. Microsatellite markers for powdery mildew resistance in pea (Pisum sativum L.). Hereditas, 2005,142(2005):86-91.
pmid: 16970617
[1] Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58.
[2] Yu Tianyi, Zheng Yaping, Qiu Shaofen, Jiang Daqi, Wu Zhengfeng, Zheng Yongmei, Sun Xuewu, Shen Pu, Wang Caibin, Zhang Jiancheng. Effects of Calcium (Ca) Application in Acidified Soil on Ca Absorption, Utilization and Yield of Different Peanut Varieties (Lines) [J]. Crops, 2021, 37(4): 80-85.
[3] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[4] Li Mengyu, Gao Chuang, Li Qiaoyun, Xu Kaige, Wang Siyu, Niu Jishan. Identification and Correlation Analysis of Wheat Cultivars (Lines) Resistance to Leaf Blight Caused by Bipolaris sorokiniana at Seedling Stage and Filling Stage [J]. Crops, 2021, 37(3): 40-45.
[5] Wang Tong, Zhao Xiaodong, Zhen Pingping, Chen Jing, Chen Mingna, Chen Na, Pan Lijuan, Wang Mian, Xu Jing, Yu Shanlin, Chi Xiaoyuan, Zhang Jiancheng. Genome-Wide Identification and Characteristic Analyzation of the TCP Transcription Factors Family in Peanut [J]. Crops, 2021, 37(2): 35-44.
[6] Suo Yanyan, Zhang Xiang, Si Xianzong, Li Liang, Yu Qiong, Yu Hui. Effects of Phosphorus and Calcium Applications on the Growth, Yield, and Phosphorus and Calcium Use Efficiency of Peanut [J]. Crops, 2021, 37(1): 187-192.
[7] Pan Xiaoxue, Hu Mingyu, Wang Zhongwei, Wu Hong, Lei Kairong. Evaluation of Agronomic Traits and Cold Tolerance at Germination Stage in Rice (Oryza sativa L.) Germplasms [J]. Crops, 2021, 37(1): 47-53.
[8] Chen Weiguo, Zhang Zheng, Shi Yugang, Cao Yaping, Wang Shuguang, Li Hong, Sun Daizhen. Drought-Tolerance Evaluation of 211 Wheat Germplasm Resources [J]. Crops, 2020, 36(4): 53-63.
[9] Qi Bingjie, Wang Min, Zhang Zhiyong, He Xin, Liu Jinghui. Diversity Analysis of Mineral Elements in Oat Germplasm Resources [J]. Crops, 2020, 36(4): 72-78.
[10] Gong Dan, Wang Suhua, Cheng Xuzhen, Wang Lixia. Construction of SSR Fingerprints and Diversity Analysis of a Cowpea Applied Core Collection [J]. Crops, 2020, 36(4): 79-83.
[11] Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[12] Sun Ruidong,Zang Zhenyuan,Ci Jiabin,Yang Wei,Ren Xuejiao,Jiang Liangyu,Yang Weiguang. Identification of Resistance and Analysis of Resistance Source for Exserohilum turcicum in Maize Inbred Lines [J]. Crops, 2020, 36(2): 65-70.
[13] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers [J]. Crops, 2019, 35(5): 15-21.
[14] Lü Wei,Han Junmei,Ren Guoxiang,Wen Fei,Wang Ruopeng,Liu Wenping. Genetic Diversity Analysis of Sesame Germplasm Resources in Shanxi [J]. Crops, 2019, 35(5): 57-63.
[15] Li Jing,Nan Ming. Analysis of Agronomic Characters and Genetic Diversity of 62 Winter Wheat Germplasms from Russia and Ukraine in Northwest China [J]. Crops, 2019, 35(5): 9-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!