Crops ›› 2021, Vol. 37 ›› Issue (5): 1-5.doi: 10.16035/j.issn.1001-7283.2021.05.001

    Next Articles

Advances in Peanut Molecular Breeding

Lin Ruxia1,2(), Guo Fengdan1,2, Wang Xingjun1,2, Xia Han1,2, Hou Lei1,2   

  1. 1School of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
    2Biotechnology Research Center of Shandong Academy of Agricultural Sciences/Shandong Key Laboratory of Crop Genetics and Breeding and Ecological Physiology, Jinan 250100, Shandong, China
  • Received:2020-09-15 Revised:2021-06-25 Online:2021-10-15 Published:2021-10-14
  • Contact: Hou Lei E-mail:2289048573@qq.com

Abstract:

With the development of high-throughput sequencing, genomics analysis and molecular biology technologies, molecular marker-assisted selection has become an important means of peanut breeding. Benefit from the new generation of high-throughput sequencing technology, a large number of molecular markers have been developed and genetic linkage maps were increasingly refined. Several new functional genes/QTLs had been discovered. Then the combination of molecular markers and conventional breeding work were strengthened. Great progress has also been achieved in peanut gene engineering studies. This article reviews the research progress of peanut molecular breeding in recent years and the problems and prospects of peanut molecular breeding.

Key words: Peanut, Molecular breeding, High-throughput sequencing, Molecular markers, Transgene

[1] Zhao C, Qiu J, Agarwal G, et al. Genome-wide discovery of microsatellite markers from diploid progenitor species,Arachis duranensis and A. ipaensis,and their application in cultivated peanut (A. hypogaea). Plant Science, 2017, 8:1209.
[2] Zhong R, Zhou M, Zhao C, et al. SSR marker development from peanut gynophore transcriptome sequencing. Plant Breeding, 2016, 135(1):111-117.
doi: 10.1111/pbr.2016.135.issue-1
[3] 徐志军, 赵胜, 徐磊, 等. 基于RNA-seq数据的栽培种花生SSR位点鉴定和标记开发. 中国农业科学, 2020, 53(4):695-706.
[4] 王娟, 刘宇, 李春娟, 等. 基于简化基因组的花生InDel标记开发和功能解析. 植物遗传资源学报, 2019, 20(1):183-191.
[5] Zhou X J, Xia Y L, Ren X P, et al. Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site- associated DNA sequencing (ddRADseq). BMC Genomics, 2014, 15(1):351.
doi: 10.1186/1471-2164-15-351
[6] Halward T, Stalker H T, Kochert G. Development of an RFLP linkage map in diploid peanut species. Theoretical and Applied Genetics, 1993, 87(3):379-384.
doi: 10.1007/BF01184927 pmid: 24190266
[7] Creste S, Tsai S M, Valls J, et al. Genetic characterization of Brazilian annual Arachis species from sections Arachis and Heteranthae using RAPD markers. Genetic Resources and Crop Evolution, 2005, 52(8):1079-1086.
doi: 10.1007/s10722-004-6098-9
[8] Milla S, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48(1):1-11.
pmid: 15729391
[9] Varshney R K, Bertioli D J, Moretzsohn M C, et al. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2009, 118(4):729-739.
doi: 10.1007/s00122-008-0933-x pmid: 19048225
[10] Ravi K, Vadez V, Isobe S, et al. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2011, 122(6):1119-1132.
doi: 10.1007/s00122-010-1517-0 pmid: 21191568
[11] Hong Y, Chen X, Liang X, et al. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biology, 2010, 10(1):17.
doi: 10.1186/1471-2229-10-17
[12] Khan S A, Zhang C, Ali N, et al. High-density SNP map facilitates fine mapping of QTLs and candidate genes discovery for Aspergillus flavus resistance in peanut (Arachis hlypogaea). Theoretical and Applied Genetics, 2020, 133(7):2239-2257.
doi: 10.1007/s00122-020-03594-0
[13] Agarwal G, Clevenger J, Pandey M K, et al. High-density genetic map using whole-genome resequencing for fine mapping and candidate gene discovery for disease resistance in peanut. Plant Biotechnology Journal, 2018, 16(11):1954-1967.
doi: 10.1111/pbi.12930 pmid: 29637729
[14] 夏友霖, 廖伯寿, 李加纳, 等. 花生晚斑病抗性 AFLP标记. 中国油料作物学报, 2007, 29(3):318-321.
[15] Shoba D, Manivannan N, Vindhiyavarman P, et al. SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica, 2012, 188(2):265-272.
doi: 10.1007/s10681-012-0718-9
[16] Sukruth M, Paratwagh S A, Sujay V, et al. Validation of markers linked to late leaf spot and rust resistance,and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut(Arachis hypogaea L.). Euphytica, 2015, 204(2):343-351.
doi: 10.1007/s10681-014-1339-2
[17] 雷永, 廖伯寿, 王圣玉, 等. 花生黄曲霉侵染抗性的 AFLP 标记. 作物学报, 2005, 31(10):1349-1353.
[18] 任小平, 姜慧芳, 廖伯寿. 花生抗青枯病分子标记研究. 植物遗传资源学报, 2008, 9(2):163-167.
[19] Herselman L, Thwaites R, Kimmins F M, et al. Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theoretical and Applied Genetics, 2004, 109(7):1426-1433.
pmid: 15290049
[20] 肖洋, 晏立英, 雷永, 等. 花生矮化病毒病抗性SSR标记. 中国油料作物学报, 2011, 33(6):561-566.
[21] 黄莉, 赵新燕, 张文华, 等. 利用RIL群体和自然群体检测与花生含油量相关的SSR标记. 作物学报, 2011, 37(11):1967-1974.
[22] Wang L F, Zhou X J, Ren X P, et al. A Major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Frontiers in Genetics, 2018, 9:652.
doi: 10.3389/fgene.2018.00652
[23] Luo H, Pandey M K, Khan A W, et al. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 2019, 17(12):2356-2369.
doi: 10.1111/pbi.v17.12
[24] Shirasawa K, Bhat R S, Khedikar Y P, et al. Sequencing analysis of genetic loci for resistance for Late Leaf Spot and Rust in peanut (Arachis hypogaea L.). Plant Science, 2018, 9:1727.
[25] Agarwal G, Clevenger J, Kale S M, et al. A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea). Scientific Reports, 2019, 9(1):18246.
doi: 10.1038/s41598-019-54747-1 pmid: 31796847
[26] Wang J, Yan C, Li Y, et al. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies. Genes, 2019, 10(10):803.
doi: 10.3390/genes10100803
[27] Zhang S, Hu X, Miao H, et al. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut ( Arachis hypogaea L.). BMC Plant Biology, 2019, 19(1):1-15.
doi: 10.1186/s12870-018-1600-2
[28] Pandey M K, Wang M L, Qiao L X, et al. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics, 2014, 15(1):133.
doi: 10.1186/s12863-014-0133-4
[29] Liu N, Guo J, Zhou X, et al. High-resolution mapping of a major and consensus quantitative trait locus for oil content to a ~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 2020, 133(1):37-49.
doi: 10.1007/s00122-019-03438-6
[30] Li L, Yang X, Cui S, et al. Construction of high-density genetic map and mapping quantitative trait loci for growth habit-related traits of peanut (Arachis hypogaea L.). Plant Science, 2019, 10:745.
[31] Luo H, Pandey M K, Khan A W, et al. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut ( Arachis hypogaea L.). Plant Biotechnology Journal, 2019, 17(7):1248-1260.
doi: 10.1111/pbi.2019.17.issue-7
[32] Chu Y, Holbrook C C, Oziasakins P, et al. Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Science, 2009, 49(6):2029-2036.
doi: 10.2135/cropsci2009.01.0021
[33] Yu H T, Yang W Q, Tang Y Y, et al. An AS-PCR assay for accurate genotyping of FAD2A/FAD2B genes in peanuts (Arachis hypogaea L.). Grasas Y Aceites:International Journal of Fats and Oils, 2013, 64(4):395-399.
[34] Zhao S, Li A, Li C, et al. Development and application of KASP marker for high throughput detection of AhFAD2 mutation in peanut. Electronic Journal of Biotechnology, 2017, 25:9-12.
doi: 10.1016/j.ejbt.2016.10.010
[35] 赵术珍, 侯蕾, 李长生, 等. 分子标记辅助回交选育高油酸花生新种质. 中国油料作物学报, 2017, 39(1):30-36.
[36] Bera S K, Kamdar J H, Kasundra S V, et al. Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS ONE, 2019, 14(12):e0226252.
doi: 10.1371/journal.pone.0226252
[37] 潘雷雷, 姜亚男, 周文杰, 等. 高油酸花生新品种宇花91的选育. 生物工程学报, 2019, 35(9):1698-1706.
[38] Huang B, Qi F, Sun Z, et al. Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breeding Science, 2019, 69(2):234-243.
doi: 10.1270/jsbbs.18107
[39] 黄冰艳, 董文召, 汤丰收, 等. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价. 作物学报, 2019, 45(4):546-555.
doi: 10.3724/SP.J.1006.2019.84096
[40] Chu Y, Wu C L, Holbrook C C, et al. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome, 2011, 4(2):110.
doi: 10.3835/plantgenome2011.01.0001
[41] 潘丽娟. 花生PEPC家族基因分析及反义PEPC1基因遗传转化研究. 泰安:山东农业大学, 2017.
[42] Tang G Y, Xu P L, Ma W H, et al. Seed-specific expression of AtLEC1 increased oil content and altered fatty acid composition in seeds of peanut (Arachis hypogaea L.). Plant Science, 2018, 9:260.
[43] 徐平丽, 唐桂英, 毕玉平, 等. 花生AhFAD2基因抑制表达的转基因后代分析. 生物工程学报, 2018, 34(9):104-112.
[44] Dodo H W, Konan K N, Chen F C, et al. Alleviating peanut allergy using genetic engineering:the silencing of the immunodominant allergen Ara h 2 leads to its significant reduction and a decrease in peanut allergenicity. Plant Biotechnology Journal, 2010, 6(2):135-145.
doi: 10.1111/pbi.2008.6.issue-2
[45] Chu Y, Faustinelli P, Ramos M L, et al. Reduction of lgE binding and nonpromotion of Aspergillus flavus fungal growth by simultaneously silencing Ara h 2 and Ara h 6 in peanut. Journal of Agricultural and Food Chemistry, 2008, 56(23):11225-11233.
doi: 10.1021/jf802600r pmid: 19007236
[46] Mehta R, Radhakrishnan T, Kumar A, et al. Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through Agrobacterium-mediated genetic transformation. Virus Disease, 2013, 24(2):205-213.
[47] 徐平丽, 单雷, 柳展基, 等. 农杆菌介导抗虫CpTI基因的花生遗传转化及转基因植株的再生. 中国油料作物学报, 2003, 25(2):5-8.
[48] Prasad K, Bhatnagar-Mathur P, Waliyar F, et al. Overexpression of a chitinase gene in transgenic peanut confers enhanced resistance to major soil borne and foliar fungal pathogens. Journal of Plant Biochemistry and Biotechnology, 2013, 22(2):222-233.
doi: 10.1007/s13562-012-0155-9
[49] 王旭达, 于树涛, 张高华, 等. 农杆菌介导花生转化体系的优化及转化AlDREB2A基因花生的耐旱性研究. 中国农业大学学报, 2018, 23(7):26-35.
[50] Qin H, Gu Q, Zhang J L, et al. Regulated expresstion of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant and Cell Physiology, 2011, 52(11):1904-1914.
doi: 10.1093/pcp/pcr125
[51] Chu Y, Deng X Y, Faustinelli P, et al. Bcl-xL transformed peanut (Arachis hypogaea L.) exhibits paraquat tolerance. Plant Cell Reports, 2008, 27(1):85-92.
pmid: 17891400
[1] Lou Shubao, Li Fengyun, Tian Guokui, Wang Haiyan, Tian Zhendong, Wang Lichun, Liu Xicai, Wang Hui. Evaluation of Germplasms for Resistance to Potato Late Blight and Molecular Markers Assisted Screening [J]. Crops, 2021, 37(4): 196-201.
[2] Yu Tianyi, Zheng Yaping, Qiu Shaofen, Jiang Daqi, Wu Zhengfeng, Zheng Yongmei, Sun Xuewu, Shen Pu, Wang Caibin, Zhang Jiancheng. Effects of Calcium (Ca) Application in Acidified Soil on Ca Absorption, Utilization and Yield of Different Peanut Varieties (Lines) [J]. Crops, 2021, 37(4): 80-85.
[3] Wang Tong, Zhao Xiaodong, Zhen Pingping, Chen Jing, Chen Mingna, Chen Na, Pan Lijuan, Wang Mian, Xu Jing, Yu Shanlin, Chi Xiaoyuan, Zhang Jiancheng. Genome-Wide Identification and Characteristic Analyzation of the TCP Transcription Factors Family in Peanut [J]. Crops, 2021, 37(2): 35-44.
[4] Suo Yanyan, Zhang Xiang, Si Xianzong, Li Liang, Yu Qiong, Yu Hui. Effects of Phosphorus and Calcium Applications on the Growth, Yield, and Phosphorus and Calcium Use Efficiency of Peanut [J]. Crops, 2021, 37(1): 187-192.
[5] Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[6] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance [J]. Crops, 2019, 35(4): 10-16.
[7] Zhao Yue,Sun Yufeng,Han Chengwei,Han Xicai,Jiang Ying,Cao Kun,Wang Xiaonan. Application Progresses of Molecular Marker Techniques Research on Hemp Sex Differentiation [J]. Crops, 2019, 35(3): 20-23.
[8] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut [J]. Crops, 2018, 34(4): 102-105.
[9] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin [J]. Crops, 2018, 34(4): 8-12.
[10] Jiangchun Song,Shuanzhu Li,Jianyu Wang,Xiuge Zhang,Xuefeng Zhu,Jianli Qiao,Zhen Xiang. Advances in Breeding of High Oil Peanut in China [J]. Crops, 2018, 34(3): 25-31.
[11] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology [J]. Crops, 2018, 34(1): 160-165.
[12] Shanshan Lu,Chenglai Wu,Yan Li,Chunqing Zhang. The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines [J]. Crops, 2018, 34(1): 41-48.
[13] Shuanzhu Li,Jiangchun Song,Jianyu Wang,Xiuge Zhang,Jianli Qiao,Ning Liu. Advances in Genetics and Breeding of High Oleic Acid Peanut [J]. Crops, 2017, 33(3): 6-13.
[14] Dongxian Ning,Yukun Zhao,Cuiping Yan,Xiuli Yang,Junhong Xiao,Liping Yang. Analysis and Evaluation of Different Models for Yield Stability of Peanut Cultivars in Southern Shanxi [J]. Crops, 2017, 33(3): 39-43.
[15] Zhurong Zheng,Ruixiang Zhang,Tingting Yang,Lichao Wen,Xuefeng Shen. Effects of Salt Stress on Physiological and Biochemical Characteristics of Roots in Peanut [J]. Crops, 2016, 32(4): 142-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!