Crops ›› 2017, Vol. 33 ›› Issue (3): 6-13.doi: 10.16035/j.issn.1001-7283.2017.03.002

Previous Articles     Next Articles

Advances in Genetics and Breeding of High Oleic Acid Peanut

Li Shuanzhu1,Song Jiangchun1,Wang Jianyu1,Zhang Xiuge1,Qiao Jianli1,Liu Ning2   

  1. 1 Nanyang Academy of Agricultural Sciences,Nanyang 473000,Henan,China
    2 The Seed Technical Service Stations of Wolong District,Nanyang 473000,Henan,China
  • Received:2017-03-17 Revised:2017-05-02 Online:2017-06-15 Published:2018-08-26
  • Contact: Jiangchun Song

Abstract:

With the development of peanut industry, people pay more and more attention to high oleic peanut. It becomes one of the major goals for breeders to develop new high-oleic peanut variety with good quality, high and steady yield. In this review we recapitulates the development of high oleic peanut. First, we summarized advances in high-oleic peanut breeding and listed some cultivars released in recent years. Secondly, we discussed the problems and development orientation of high-oleic peanut breeding. And finally we provided some references for the coming breeding work.

Key words: Peanut, High oleic, Genetic breeding

Table 1

Molecular markers commonly used in breeding of high oleic acid peanut"

类型
Types
引物Primers 分子标记Markers 文献
References
CAPS Marker
af19-F:GATTACTGATTATTGACTT
1056-R:CCAACCCAAACCTTTCAGAG
Hpy991:ol1型不能被酶切,Ol1型被切成598bp和228bp
[30]
1344-F:GGAGCTTTAACAACACAA
1345-R:ATATGGGAGCATAAGGGT
Hpy188I:ol2型被切成521bp和137bp,Ol2型不能被酶切
[6]
bf19-F:CAGAACCATTAGCTTTG
FAD-R:CTCTGACTATGCATCAG
Hpy188I: ol2型被切成6段;Ol2型被切成5段
[6]
AS-PCR
bf19-F:CAGAACCATTAGCTTTG
FAD-R:CTCTGACTATGCATCAG
ahFAD2B基因665_666insMITE突变型扩增片断1434bp,野生型扩增片断1220bp [4]
F435-F:ATCCAAGGCTGCATTCTCAC [37]
F435IC-R:CTCCCTGGTGGATTGTTCATGT 参考片断250bp(检测PCR是否成功)
F435WT-R:ACTTCGTCGCGGTCG 扩增193bp条带,Ol1Ol1Ol2Ol2无此条带
F435SUB-R:TGGGACAAACACTTCGTT 扩增203bp条带,ol1ol1型有此条带
F435INS-R:AACACTTCGTCGCGGTCT 扩增195bp条带,ol2ol2突变有此条带
FAD2A-F:GATTACTGATTATTGACTTGCTTTG
FAD2A-G:GTTTTGGGACAAACACTTCTTC(反应1)
FAD2A-A:GTTTTGGGACAAACACTTCTTT(反应2)
Ol1Ol1和ol1ol1型分别在反应1和反应2有557bp条带, Ol1ol1型在反应1和反应2中都有557bp条带
[27]

FAD2B-F:CAGAACCATTAGCTTTGTAGTAGTG
FAD2B-C:AACACTTCGTCGCGGTTG(反应3)
FAD2B-A:AACACTTCGTCGCGGTTT(反应4)
Ol2Ol2和ol2ol2型分别在反应3和反应4有536bp条带,
Ol2ol2型在反应3和反应4中都有536bp条带
FAD2-R:CTCTGACTATGCATCAGAACTTGT 参考片断1.2kb(检测PCR是否成功)
RT-PCR
FAD2B-F:GCCGCCACCACTCCAAC
FAD2B-R:TGGTTICGGGACAAACACTIC
探针6FAMACAGGTTCCCTCAGACMGBNFQ检测ol2型;
探针VICACAGGTTCCCTCGACMGBNFQ检测Ol2型
[38]
FAD2A-F:GCCGCCACCACTCCAACAC
FAD2A-R:GTTATACCATGATACCTTTGATTTTGGTTTTG
探针6FAMCCTCGACCGCAACG MGBNFQ检测ol1型;
探针VICCCTCGACCGCGACGMGBNFQ检测Ol1型
[39]

Table 2

High oleic acid peanut varieties breeding in American"

品种
Varieties
类型
Types
油酸含量或油酸/亚油酸
Oil content or O/L
PVP号
PVP No.
品种
Varieties
类型
Types
油酸含量或油酸/亚油酸
Oil content or O/L
PVP号
PVP No.
SunOleic 95R Runner 80 9400148 York Runner 80 200800186
458[4] Runner - 9600242 Florida Fancy[43] Virginia - 200800231
AT225 High Oleic Runner 80 9700010 McCloud[43] Runner - 200800232
SunOleic 97R Runner 80 9700182 Tamnut OL06 Spanish 20.8:1 200800279
GK-7 High Oleic[41] Runner - 9800019 Tamrun OL07[44] Runner - 200800280
AgraTech 1-1[41] Runner - 200000134 Georgia-08V Virginia 83.79 200900238
AgraTech 201[41] Runner - 200000135 Georgia-09B[45] Runner - 201000075
AgraTech VC2[41] Runner - 200000136 107[45] Runner - 201100459
Georgia Hi-O/L Virginia 40:1 200000255 Georgia-11J[46] Virginia - 201200100
Olin Spanish 22.3:1 200200149 Red River Runner Runner 24.5:1 201200244
Tamrun OL01 Runner 13:1 200200150 Tamrun OL11[47] Runner - 201300196
Georgia 02C Runner 32:1 200300050 727[45] Runner - 201300199
Tamrun OL02 Runner 24.1:1 200300170 511[45] Runner - 201400249
Andru II Runner 80 200300179 Georgia-13M[45] Runner - 201400324
ANorden Runner 80 200300205 NuMex 01[48] Valencia 23:1 -
Hull Runner 80 200300207 297[45] Runner - 201500201
GP-1 Runner 80 200300321 Sullivan[49] - - 201500287
Georgia-04S Spanish 34:1 200500121 Wynne[49] - - 201500288
Georgia-05E Virginia 35:1 200600059 OLé Spanish 20:1 201500377
Brantley Virginia 27.8:1 200600071 VENUS Virginia 26:1 201500363
Tamrun OL12[42] Runner - - Webb[50] Runner - 201500394
AT-3085RO[43] Runner - 200700154 157[44] Runner - 201600140
AT-215[43] Runner - 200700261 Lariat Runner 21:1 201600156
Florida 07 Runner 80 200800069

Table 3

High oleic acid peanut varieties breeding in China"

品种Varieties 油酸含量(%)
Oleic acid
content
审(鉴)定 登记证号
Trial ( Appraisal )
registration No.
品种Varieties 油酸含量(%)
Oleic acid
content
审(鉴)定 登记证号
Trial ( Appraisal )
registration No.
狮油红4号Shiyouhong 4 75.13 1991年广东审定 花育661 Huayu 661 81.20 皖品鉴登字第1405002
开农H03-3 Kainong H03-3 81.60 皖品鉴登字第0605006 花育663 Huayu 663 80.60 皖品鉴登字第1405003
花育32 Huayu 32 77.80 鲁农审2009040号 花育962 Huayu 962 82.30 皖品鉴登字第1405019
开农61 Kainong 61 76.01 豫审花2012001 花育963 Huayu 963 80.10 皖品鉴登字第1505029
开农176 Kainong 176 76.80 国品鉴花生2013001 花育964 Huayu 964 81.70 皖品鉴登字第1505030
花育662 Huayu 662 82.11 皖品鉴登字第1305001 花育965 Huayu 965 81.50 皖品鉴登字第1505031
花育51 Huayu51 80.31 皖品鉴登字第1305005 花育966 Huayu 966 82.00 皖品鉴登字第1505032
花育52 Huayu 52 81.45 皖品鉴登字第1305006 冀花16 Jihua 16 79.25 国品鉴花生2015006
花育951 Huayu 951 80.47 皖品鉴登字第1305007 开农71 Kainong 71 72.95 豫审花2015002
花育961 Huayu 961 81.20 皖品鉴登字第1305010 豫花37号Yuhua 37 78.00 豫审花2015011
冀花11 Jihua11 80.70 2013年河北鉴定 花育664 Huayu 664 81.90 皖品鉴登字第1505026
冀花13 Jihua 13 79.60 国品鉴花生2014005 花育666 Huayu 666 81.70 皖品鉴登字第1505027
开农1715 Kainong1715 75.60 豫审花2014002 花育667 Huayu 667 80.30 皖品鉴登字第1505028
开农58 Kainong 58 79.40 鄂审油2014006 冀花18号Jihua 18 81.80 冀审花2016015号
[1] 张雯丽, 李想, 李淞淋 . 中国花生供需现状及未来10年展望.农业展望, 2015(9):7-11.
doi: 10.3969/j.issn.1673-3908.2015.09.002
[2] 王传堂, 张建成 . 花生遗传改良.上海: 上海科学技术出版社, 2013.
[3] Norden A J, Gorbet D W, Knauft D A . Variability in oil quality among peanut genotypes in the florida breeding program. Peanut Science, 1987,14:7-11.
doi: 10.3146/i0095-3679-14-1-3
[4] Patel M, Jung S, Moore K , et al. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical and Applied Genetics, 2004,108(8):1492-1502.
doi: 10.1007/s00122-004-1590-3 pmid: 14968307
[5] Jung S, Swift D, Sengoku E , et al. The high oleate trait in the cultivated peanut (Arachis hypogaea L.).I.Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Molecular & General Genetics:MGG, 2000,263(5):796-805.
[6] Chu Y, Holbrook C C, Ozias-Akins P . Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Science, 2009,49:2029-2036.
doi: 10.2135/cropsci2009.01.0021
[7] Yu S L, Pan L J, Yang Q L , et al. Comparison of the 12 fatty acid desaturase gene between high oleic and normal oleic peanut genotypes. Journal of Genetics and Genomics, 2008,35:679-685.
doi: 10.1016/S1673-8527(08)60090-9
[8] Wang C T, Tang Y Y, Wang X Z , et al. Sodium azide mutagenesis resulted in a peanut plant with elevated oleate content.Electronic Journal of Biotechnology. 2011,14(2):1-7.
[9] Fang C Q, Wang C T, Wang P W , et al. Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. Journal of Oleo Science, 2012,61(3):143-148.
doi: 10.5650/jos.61.143
[10] Mondal S, Badigannavar A M . Induction of genetic variability for fatty acid composition in a large-seeded groundnut variety through induced mutagenesis. British Journal of Pharmacology, 2010,8:1-4.
[11] Mondal S, Badigannavar A M , D’Souza S F.Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breeding, 2011,130(2):242-247.
doi: 10.1111/pbr.2011.130.issue-2
[12] 徐霞 . 高油酸花生基因工程育种的研究. 济南:山东大学, 2006.
doi: 10.7666/d.y982663
[13] 张小茜, 单雷, 唐桂英 , 等. 农杆菌介导的花生Δ~(12)脂肪酸脱氢酶基因AhFAD2 RNAi抑制表达遗传转化研究. 中国油料作物学报, 2007,29(4):409-415.
doi: 10.3321/j.issn:1007-9084.2007.04.010
[14] Yin D M, Deng S Z, Zhan K H , et al. High oleic peanut oils produced by hpRNA mediated genes ilencing of oleate desaturase. Plant Molecular Biology Reporter, 2007,25:154-163.
doi: 10.1007/s11105-007-0017-0
[15] 李桂民 . 双链RNA基因沉默在高油酸花生育种中的应用. 长春:东北师范大学, 2005.
[16] 姜慧芳, 段乃雄 . 花生种质资源的综合评价. 中国油料作物学报, 1998,20(3):31-35.
[17] Wang M L, Tonnis B , An Y Q C,et al.Newly identified natural high-oleate mutant from Arachis hypogaea L.subsp.hypogaea. Molecular Breeding, 2015,35(9):1-9.
doi: 10.1007/s11032-015-0202-z
[18] Moore K M, Knauft D A . The inheritance of high oleic acid in peanut. Heredity, 1989,80:252-253
doi: 10.1002/j.2168-0159.2012.tb05694.x
[19] Knauft D A, Moore K M, Gorbet D W . Further studies on the inheritance of fatty acid composition in peanut. Peanut Science, 1993,20:74-76.
doi: 10.3146/i0095-3679-20-2-2
[20] 禹山林 ,Isleib T G. 美国大花生脂肪酸的遗传分析. 中国油料作物学报, 2000,22(1):34-37.
[21] 丁锦平, 韩柱强, 周瑞阳 , 等. 花生油酸亚油酸比值的遗传分析. 中国油料作物学报, 2007,29(3):233-237.
doi: 10.3321/j.issn:1007-9084.2007.03.002
[22] 黄冰艳, 张新友, 苗利娟 , 等. 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012,45(4):617-624.
doi: 10.3864/j.issn.0578-1752.2012.04.002
[23] Singkham N, Jogloy S, Kesmala T , et al. Estimation of heritability by parent-offspring regression for high-oleic acid in peanut. Asian Journal of Plant Sciences, 2010,9(6):358-363.
doi: 10.3923/ajps.2010.358.363
[24] Barkley N A, Isleib T G, Wang M L , et al. Genotypic effect of ahFAD2,on fatty acid profiles in six segregating peanut (Arachis hypogaea L.) populations. BMC Genetics, 2013,14(1):1-13.
[25] Ray T K, Holly S P, Knauft D A , et al. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Science, 1993,91:15-21.
doi: 10.1016/0168-9452(93)90184-2
[26] Patel M, Jung S, Moore K , et al. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical & Applied Genetics, 2004,108(8):1492-1502.
doi: 10.1007/s00122-004-1590-3 pmid: 14968307
[27] Yu H T, Yang W Q, Tang Y Y , et al. An AS-PCR assay for accurate genotyping of FAD2A/FAD2B genes in peanuts (Arachis hypogaea L.). Grasas Y Aceites, 2013,64(4):395-399.
doi: 10.3989/gya.2013.v64.i4
[28] Jung S, Powell G, Moore K , et al. The high oleate trait in the cultivated peanut (Arachis hypogaea L).II.Molecular basis and genetics of the trait. Molecular & General Genetics Mgg, 2000,263(5):806-811.
[29] López Y, Nadaf H L, Smith O D , et al. Isolation and characterization of the Delta(12)-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theoretical & Applied Genetics, 2000,101(7):1131-1138.
[30] Chu Y, Ramos L, Holbrook C C , et al. Frequency of a loss-of-function mutation in Oleoyl-PC desaturase,in the Mini-Core of the U.S.peanut germplasm collection. Crop Science, 2007,47(6):2372-2378.
doi: 10.2135/cropsci2007.02.0117
[31] 雷永, 姜慧芳, 文奇根 , 等. ahFAD2A等位基因在中国花生小核心种质中的分布及其与种子油酸含量的相关性分析. 作物学报, 2010,36(11):1864-1869.
doi: 10.3724/SP.J.1006.2010.01864
[32] Mukri G, Nadaf H L, Bhat R S , et al. Phenotypic and molecular dissection of ICRISAT mini core collection of peanut (Arachis hypogaea L.) for high oleic acid. Plant Breeding, 2012,131(3):418-422.
doi: 10.1111/pbr.2012.131.issue-3
[33] 高慧敏, 张颖君 . 花生种子脂肪酸含量的微量、快速测定. 中国农学通报, 2010,26(13):98-103.
[34] Yang C D, Guan S Y, Tang Y Y , et al. Rapid non-destructive determination of fatty acids in single groundnut seeds by gas chromatography. Journal of Peanut Science, 2012,41(3):21-26.
[35] Bannore Y C, Chenault K D, Melouk H A , et al. Capillary electrophoresis of some free fatty acids using partially aqueous electrolyte systems and indirect UV detection.Application to the analysis of oleic and linoleic acids in peanut breeding lines. Journal of Separation Science, 2008,31(14):2667-2676.
doi: 10.1002/jssc.v31:14
[36] Tillman B L, Gorbet D W, Person G . Predicting oleic and linoleic acid content of single peanut seeds using near-infrared reflectance spectroscopy. Crop Science, 2006,46(5):2121-2126.
doi: 10.2135/cropsci2006.01.0031
[37] Chen Z, Wang M L, Barkley N A , et al. A simple Allele-Specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Molecular Biology Reporter, 2010,28(3):542-548.
doi: 10.1007/s11105-010-0181-5
[38] Barkley N A , Chamberlin K D C.Wang M L,et al.Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Molecular Breeding, 2010,25:541-548.
doi: 10.1007/s11032-009-9338-z
[39] Barkley N A, Wang M L, Pittman R N . A real-time PCR genotyping assay to detect FAD2A SNPs in peanuts (Arachis hypogaea L.). Electronic Journal of Biotechnology, 2011,14(1):9-10.
doi: 10.2225/vol14-issue1-fulltext-12
[40] 陈静, 毛瑞喜, 胡晓辉 , 等. 利用RIL群体检测与花生高油酸含量连锁的SSR标记. 花生学报, 2016,45(1):1-7.
[41] Bostick J P, Wells L W, Gamble B E. The 2000 alabama performance comparison of peanut varieties. The 2000 alabama performance comparison of peanut varieties.
[42] Simpson C E, Baring M R, Schubert A M , et al. Registration of 'Tamrun OL12' peanut. Journal of Plant Registrations, 2006,8(2):117-121.
doi: 10.2135/cropsci2006.02-0125
[43] Bostick J P, Wells L W, Gamble B E. The 2009 alabama performance comparison of peanut varieties. The 2009 alabama performance comparison of peanut varieties.
[44] Baring M R, Simpson C E, Burow M D , et al. Registration of ‘Tamrun OL07’ peanut. Crop Science, 2006,46(6):449-456.
doi: 10.2135/cropsci2006.06.0413
[45] Bostick J P, Wells L W, Gamble B E . The 2016 alabama performance comparison. The 2016 alabama performance comparison.
[46] Branch W D . Registration of 'Georgia-11J' peanut. Journal of Plant Registrations, 2012,6(3):281-283.
doi: 10.3198/jpr2011.11.0604crc
[47] Baring M R, Simpson C E, Burow M D , et al. Registration of 'Tamrun OL11' peanut. Journal of Plant Registrations, 2013,7(2):154.
doi: 10.3198/jpr2012.06.0001crc
[48] Puppala N, Tallury S P . Registration of 'NuMex 01' high oleic valencia peanut. Journal of Plant Registrations, 2014,8(2):127.
doi: 10.3198/jpr2013.11.0070crc
[49] Roberson R. Growers should like two new high oleic peanut varieties.Southeast Farm Press Exclusive Insight, 2013.
[50] Simpson C E, Starr J L, Baring M R , et al. Registration of 'Webb' peanut. Journal of Plant Registrations, 2013,7(3):265.
doi: 10.3198/jpr2013.01.0005crc
[51] 廖小妹, 黎秀英, 李丽容 , 等. 低亚油酸特异花生品种狮油红4号.广东农业科学, 1992(6):20.
[52] 陈静 . 高油酸花生遗传育种研究进展. 植物遗传资源学报, 2011,12(2):190-196.
[53] 周建华 . 我国花生产业供求、价格与利益分配研究. 北京:中国农业科学院, 2012.
[1] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut [J]. Crops, 2018, 34(4): 102-105.
[2] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin [J]. Crops, 2018, 34(4): 8-12.
[3] Jiangchun Song,Shuanzhu Li,Jianyu Wang,Xiuge Zhang,Xuefeng Zhu,Jianli Qiao,Zhen Xiang. Advances in Breeding of High Oil Peanut in China [J]. Crops, 2018, 34(3): 25-31.
[4] Dongxian Ning,Yukun Zhao,Cuiping Yan,Xiuli Yang,Junhong Xiao,Liping Yang. Analysis and Evaluation of Different Models for Yield Stability of Peanut Cultivars in Southern Shanxi [J]. Crops, 2017, 33(3): 39-43.
[5] Zhurong Zheng,Ruixiang Zhang,Tingting Yang,Lichao Wen,Xuefeng Shen. Effects of Salt Stress on Physiological and Biochemical Characteristics of Roots in Peanut [J]. Crops, 2016, 32(4): 142-145.
[6] Yiming Liu,Zhao Ling,Yufen Han,Guimei Yang,Jingtao Wen. Effects of Selenium(Se) Fertilizer Concentration on Se Content of Red Peanut [J]. Crops, 2016, 32(2): 105-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .