Crops ›› 2021, Vol. 37 ›› Issue (6): 36-45.doi: 10.16035/j.issn.1001-7283.2021.06.006
Previous Articles Next Articles
Yu Meixia1(), Deng Haodong1(), Tan Jing’ai1, Song Guiting1, Wu Guangliang1, Chen Liping1, Liu Ruiqi1, Zhou Andong1, He Haohua1,2, Bian Jianmin1,2()
[1] | Zhang Z Y, Li J J, Pan Y H, et al. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 2017(8):14788. |
[2] | 刘次桃, 王威, 毛毕刚, 等. 水稻耐低温逆境研究:分子生理机制及育种展望. 遗传, 2018, 40(3):171-185. |
[3] |
Groot T T, Bodegom V P, Meijer H, et al. Gas Transport through the root-shoot transition zone of rice tillers. Plant and Soil, 2005, 277(1):107-116.
doi: 10.1007/s11104-005-0435-4 |
[4] | 韩龙植, 乔永利, 曹桂兰, 等. 水稻生长早期耐冷性QTL分析. 中国水稻科学, 2005(2):122-126. |
[5] | 杨洛淼, 王敬国, 刘化龙, 等. 寒地粳稻发芽期和芽期的耐冷性QTL定位. 作物杂志, 2014(6):44-51. |
[6] |
Andaya V C, Tai T H. Fine mapping of the qCTS12 locus,a major QTL for seedling cold tolerance in rice. Theoretical and Applied Genetics, 2006, 113(3):467-475.
pmid: 16741739 |
[7] |
Fujino K, Sekiguchi H. Origins of functional nucleotide polymorphisms in a major quantitative trait locus,qLTG3-1,controlling low-temperature germinability in rice. Plant Molecular Biology, 2011, 75(1/2):1-10.
doi: 10.1007/s11103-010-9697-1 |
[8] |
Li J L, Pan Y H, Guo H F, et al. Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice. Theoretical and Applied Genetics, 2018, 131(1):157.
doi: 10.1007/s00122-017-2992-3 |
[9] |
Shi Y T, Yang S H. COLD1:a cold sensor in rice. Science China Life Sciences, 2015, 58(4):409-410.
doi: 10.1007/s11427-015-4831-6 |
[10] |
Zhou L, Zeng Y W, Zheng W W, et al. Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line. Theoretical and Applied Genetics, 2010, 121(5):895-905.
doi: 10.1007/s00122-010-1358-x pmid: 20512559 |
[11] |
Steele K A, Price A H, Shashidhar H E, et al. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theoretical and Applied Genetics, 2006, 112(2):208-221.
pmid: 16208503 |
[12] |
Shimizu A, Kato K, Komatsu A, et al. Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.):fine QTL mapping and multivariate analysis of related traits. Theoretical and Applied Genetics, 2008, 117(6):987-996.
doi: 10.1007/s00122-008-0838-8 |
[13] |
Mitsuhiro O, Wataru T, Takeshi E, et al. Fine-mapping of qRL6.1,a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions. Theoretical and Applied Genetics, 2010, 121(3):535-547.
doi: 10.1007/s00122-010-1328-3 pmid: 20390245 |
[14] |
Wang H M, Xu X M, Zhan X D, et al. Identification of qRL7,a major quantitative trait locus associated with rice root length in hydroponic conditions. Breeding Science, 2013, 63(3):267-274.
doi: 10.1270/jsbbs.63.267 |
[15] | 徐晓明, 张迎信, 王会民, 等. 一个水稻根长QTL qRL4的分离鉴定. 中国水稻科学, 2016, 30(4):363-370. |
[16] | 赵春芳, 张亚东, 陈涛, 等. 低磷胁迫下水稻苗期根长性状的QTL定位. 华北农学报, 2013, 28(6):6-10. |
[17] |
Redona E D, Mackill D J. Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theoretical and Applied Genetics, 1996, 92(3/4):395-402.
doi: 10.1007/BF00223685 |
[18] |
Fukuda A, Terao T. QTLs for shoot length and Chlorophyll content of rice seedlings grown under low-temperature conditions,using a cross between Indica and Japonica cultivars. Plant Production Science, 2015, 18(2):128-136.
doi: 10.1626/pps.18.128 |
[19] |
Zhang Z H, Yu S B, Yu T, et al. Mapping quantitative trait loci (QTLs) for seedling-vigor using recombinant inbred lines of rice (Oryza sativa L.). Field Crops Research, 2004, 91(2):161-170.
doi: 10.1016/j.fcr.2004.06.004 |
[20] | 班超, 张晓玲, 穆平. 水稻根系性状QTL的整合、分类和真实性分析. 中国农学通报, 2009, 25(19):20-25. |
[21] | Meng L, Li H H, Zhang L Y, et al. QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in bi-parental populations. The Crop Journal, 2015(3):269-283. |
[22] |
Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175(1):361-374.
doi: 10.1534/genetics.106.066811 |
[23] |
McCouch S R. Committee on gene symbolization,nomenclature and linkage,rice genetics cooperative. Rice, 2008, 1(1):72-84.
doi: 10.1007/s12284-008-9004-9 |
[24] | 王存虎, 刘东, 许锐能, 等. 大豆叶柄角的QTL定位分析. 作物学报, 2020, 46(1):9-19. |
[25] | 陈利华, 万杉. 不同温度条件下水稻种子活力QTL的定位分析. 武汉植物学研究, 2005, 23(2):125-130. |
[26] | 代贵金, 华泽田, 陈温福, 等. 杂交粳稻、常规粳稻、旱稻及籼稻根系特征比较. 沈阳农业大学学报, 2008, 39(5):515-519. |
[27] | 蔡昆争, 骆世明, 段舜山. 水稻群体根系特征与地上部生长发育和产量的关系. 华南农业大学学报, 2005, 26(2):1-4. |
[28] |
Fujino K, Sekiguchi H, Sato T, et al. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2004, 108(5):794-799.
pmid: 14624339 |
[29] |
Miura K, Lin S Y, Yano M, et al. Mapping quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Breeding Science, 2001, 51(4):293-299.
doi: 10.1270/jsbbs.51.293 |
[30] |
Courtois B, Shen L, Petalcorin W, et al. Locating QTLs controlling constitutive root traits in the rice population IAC 165×Co39. Euphytica, 2003, 134(3):335-345.
doi: 10.1023/B:EUPH.0000004987.88718.d6 |
[31] |
Zheng H G, Babu R C, Pathan M S, et al. Quantitative trait loci for root-penetration ability and root thickness in rice:comparison of genetic backgrounds. Genome, 2000, 43(1):53-61.
pmid: 10701113 |
[32] | 徐吉臣, 李晶昭, 郑先武, 等. 苗期水稻根部性状的QTL定位. 遗传学报, 2001, 28(5):433-439. |
[33] |
Uga Y, Okuno K, Yano M. QTLs underlying natural variation in stele and xylem structures of rice root. Breeding Science, 2008, 58(1):7-14.
doi: 10.1270/jsbbs.58.7 |
[34] |
Ikeda H, Kamoshita A, Manabe T. Genetic analysis of rooting ability of transplanted rice (Oryza sativa L.) under different water conditions. Journal of Experimental Botany, 2007, 58(2):309-318
pmid: 17075079 |
[35] |
Li W X, Zhao H J, Pang W Q, et al. Seed-specific silencing of OsMRP5 reduces seed phytic acid and weight in rice. Transgenic Research, 2014, 23(4):585-599.
doi: 10.1007/s11248-014-9792-1 |
[36] |
Yukihiro I, Fumiko K, Kazuma H, et al. Fatty acid elongase is required for shoot development in rice. Plant Journal, 2011, 66(4):680-688.
doi: 10.1111/j.1365-313X.2011.04530.x |
[37] |
Zhao Y, Jiang C H, Rehman R, et al. Genetic analysis of roots and shoots in rice seedling by association mapping. Genes and Genomics, 2019, 41(1):95-105.
doi: 10.1007/s13258-018-0741-x pmid: 30242741 |
[1] | Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107. |
[2] | Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133. |
[3] | Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151. |
[4] | Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170. |
[5] | Li Xu, Fu Lidong, Wang Yu, Sui Xin, Ren Hai, Lü Xiaohong, Ma Chang, Du Meng, Mao Ting. Effects of Genetic Interaction between DEP1 and NRT1.1B on Nitrogen Use in Rice [J]. Crops, 2021, 37(6): 22-27. |
[6] | Yu Julong, Zhang Guo, Zhao Laicheng, Yao Kebing, Luo Guanghua, Fang Jichao, Zhang Jianhua, Jiao Yang, Shu Zhaolin. Control Effects of Different Seed Treatments on the Rice Leaf Folder under Machine-Planting Condition [J]. Crops, 2021, 37(6): 224-229. |
[7] | Zhang Jun, Deng Aixing, Shang Ziyin, Tang Zhiwei, Yan Shengji, Zhang Weijian. Innovative Rice Cropping for Higher Yield and Less CH4 Emission under Crop Straw Incorporation [J]. Crops, 2021, 37(6): 230-235. |
[8] | Su Daiqun, Chen Liang, Li Feng, Wu Qi, Bai Junjie, Zou Detang, Wang Jingguo, Liu Hualong, Zheng Hongliang. Identification of New Heading Date QTLs Using High Density Genetic Map in Rice [J]. Crops, 2021, 37(6): 58-61. |
[9] | Zhou Qiyun, Zheng Chongyi, Jing Yongfeng, Liu Yongjun, Peng Shuguang, Chen Tao, Liu Zhixuan, Hu Ruiwen, Zhou Qingming, Li Juan. Study on Soil Organic Matter Content and Its Relationship with Nitrogen, Phosphorus and Potassium in Different Soil Layers of Rice-Growing Tobacco Areas in Southern Hunan [J]. Crops, 2021, 37(5): 114-119. |
[10] | Shi Nan, Gao Zhiqiang, Hu Haiyan, Chen Chongyi, Wen Shuangya. The Effects of Ordered Machine Thickening and Reducing Fertilizer on Yield and Partial Fertilizer Productivity of Hybrid Rice [J]. Crops, 2021, 37(5): 128-133. |
[11] | Tang Zhiqiang, Zhang Liying, He Na, Ma Zuobing, Zhao Mingzhu, Wang Changhua, Zheng Wenjing, Yin Yong’an, Wang Hui. Effects of Mechanical Direct Dry Seeding on Rice Growth, Photosynthetic Characteristics and Yield [J]. Crops, 2021, 37(5): 87-94. |
[12] | Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111. |
[13] | Tong Tianyi, Cai Jianxuan, Zhang Jisheng, Li Lin, Ma Lin, He Roujing, Tang Xiangru. Effects of Fertilizer Types on Yield, Quality and Aroma of Fragrant Rice [J]. Crops, 2021, 37(4): 152-158. |
[14] | Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183. |
[15] | Ling Chen, Liu Hong, Yang Zhe, Huang Zhanquan, Chen Mengqiang, Rao Dehua, Xu Zhenjiang. Effects of Double-Cropping Rice Cultivation on the Expression of Quantitative Characteristics of Rice DUS Testing Example Varieties [J]. Crops, 2021, 37(4): 18-25. |
|