Crops ›› 2022, Vol. 38 ›› Issue (1): 174-178.doi: 10.16035/j.issn.1001-7283.2022.01.026

Previous Articles     Next Articles

Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress

Du Xin(), Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang   

  1. College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
  • Received:2021-08-15 Revised:2021-09-22 Online:2022-02-15 Published:2022-02-16

Abstract:

In order to investigate the effect of melatonin on soybean AsA-GSH cycle under drought stress, the soybean variety Suinong 26 was used as material, and three treatments were set up by pot weighing method: normal water supply (CK), drought stress (D) and drought stress with spraying melatonin (D+M). The results showed that the contents of O2-. and H2O2 in soybean leaves under D treatment were significantly increased compared with CK treatment, and the contents of O2-. and H2O2 on the 15th day after drought under D+M treatment were significantly decreased by 18.09% and 17.37%, respectively. On the 10th day after drought, the contents of AsA and GSH in D+M treatment were significantly increased by 22.39% and 15.30% compared with D treatment, respectively. The grain weight per plant of D+M treatment was significantly higher than that of D treatment, and 9.20% higher than that of D treatment. In conclusion, exogenous melatonin could improve the efficiency of AsA-GSH cycle under drought stress and alleviate the oxidative damage of soybean under drought stress.

Key words: Soybean, Melatonin, Yield, AsA-GSH cycle, Drought stress

Fig.1

Effects of melatonin on ROS by-products of soybean under drought stress Different lowercase letters represent significant difference (P < 0.05), the same below"

Fig.2

Effects of melatonin on key enzymes activities of AsA-GSH cycle in soybean under drought stress"

Fig.3

Effects of melatonin on AsA-GSH cycle substances contents in soybean under drought stress"

Table 1

Effects of melatonin on morphological indexes of soybean under drought stress"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
底荚高
Bottom pod
height (cm)
CK 91.45±0.45a 7.20±0.25a 21.50±1.03a
D 87.42±3.12b 6.80±0.21a 19.50±0.70a
D+M 88.99±2.36ab 6.94±0.19a 19.95±1.12a

Table 2

Effects of melatonin on yield components of soybean under drought stress"

处理
Treatment
单株荚数
Pod number
per plant
单株粒数
Grain number
per plant
百粒重
100-seed
weight (g)
单株粒重
Grain weight
per plant (g)
CK 17.75±0.14a 38.84±0.25a 19.13±0.71a 9.00±0.40a
D 15.99±0.26c 36.26±0.33c 14.75±0.48c 6.23±0.18c
D+M 16.74±0.14b 37.78±0.19b 16.55±0.49b 6.80±0.52b
[1] 李琬. 干旱对大豆根系生育的影响及灌溉缓解效应研究进展. 草业学报, 2019, 28(4):192-202.
[2] 叶君, 邓西平, 王仕稳, 等. 干旱胁迫下褪黑素对小麦幼苗生长、光合和抗氧化特性的影响. 麦类作物学报, 2015, 35(9):1275-1283.
[3] Li B Y, Feng Y N, Zong Y Z, et al. Elevated CO2-induced changes in photosynthesis,antioxidant enzymes and signal transduction enzyme of soybean under drought stress. Plant Physiology and Biochemistry, 2020, 154:105-114.
doi: 10.1016/j.plaphy.2020.05.039
[4] Chastain D R, Snider J L, Collins G D, et al. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance,increasing photorespiration,and increasing the ratio of dark respiration to gross photosynthesis. Journal of Plant Physiology, 2014, 171(17):1576-1585.
doi: 10.1016/j.jplph.2014.07.014 pmid: 25151126
[5] Gupta M, Cuypers A, Vangronsveld J, et al. Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris. Physiologia Plantarum, 1999, 106(3):262-267.
doi: 10.1034/j.1399-3054.1999.106302.x
[6] 姜颖, 赵越, 孙全军, 等. 植物生长调节剂在植物生长发育中的应用. 黑龙江科学, 2018, 9(24):4-7,11.
[7] 张融雪, 孙玥, 苏京平, 等. 植物褪黑素研究进展. 生物技术进展, 2021, 11(3):297-303.
[8] 郑春芳, 刘伟成, 魏龙, 等. 外施褪黑素对低温胁迫下红树植物秋茄光合作用和抗坏血酸-谷胱甘肽循环的调控. 植物生理学报, 2019, 55(8):1211-1221.
[9] 申洁. 腐植酸对谷子抗旱生理特性及产量的影响. 晋中:山西农业大学, 2019.
[10] 李进, 雷斌, 翟梦华, 等. 棉花幼苗AsA-GSH循环对低温胁迫的响应机制研究. 核农学报, 2021, 35(1):221-228.
[11] 唐章程. 现代植物生理学实验指南. 北京: 科学出版社, 1999: 127.
[12] 王爱国, 罗广华. 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学通讯, 1990(6):55-57.
[13] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006:221-223.
[14] Chakrabarty D, Datta S K. Micropropagation of gerbera:lipid peroxidation and antioxidant enzyme activities during acclimatization process. Acta Physiologiae Plantarum, 2008, 30(3):325-331.
doi: 10.1007/s11738-007-0125-3
[15] Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves. Plant Physiology, 1992, 98(4):1222-1227.
doi: 10.1104/pp.98.4.1222 pmid: 16668779
[16] Grill E D. Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiology, 1978, 61(1):119-121.
doi: 10.1104/pp.61.1.119
[17] Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 1980, 106(1):207-212.
pmid: 7416462
[18] Rao M V, Hale B A, Ormrod D P. Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide:role of antioxidant enzymes. Plant Physiology, 1995, 109(2):421.
pmid: 12228603
[19] 邹京南, 金喜军, 王孟雪, 等. 外源褪黑素对干旱胁迫条件下大豆鼓粒期光合及生理的影响. 大豆科学, 2018, 37(6):896-905.
[20] 曹亮, 杜昕, 于高波, 等. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析. 作物学报, 2021, 47(9):1779-1790.
doi: 10.3724/SP.J.1006.2021.04151
[21] 邹京南. 外源褪黑素对干旱胁迫下大豆光合及生长的影响. 大庆:黑龙江八一农垦大学, 2019.
[22] Rasheed R, Yasmeen H, Hussain I, et al. Exogenously applied 5-aminolevulinic acid modulates growth,secondary metabolism and oxidative defense in sunflower under water deficit stress. Physiology and Molecular Biology of Plants, 2020, 26(3):489-499.
doi: 10.1007/s12298-019-00756-3 pmid: 32205925
[23] 山溪, 秦文斌, 张振超, 等. 低温胁迫对不同品系甘蓝幼叶AsA-GSH循环代谢的影响. 南方农业学报, 2018, 49(11):2230-2235.
[24] Bashri G, Prasad S M. Exogenous IAA differentially affects growth,oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings:Toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Ecotoxicology and Environmental Safety, 2016, 132:329-338.
doi: 10.1016/j.ecoenv.2016.06.015
[25] 孙军利, 赵宝龙, 郁松林. SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响. 核农学报, 2015, 29(4):799-804.
[26] 郁敏, 任亚萍, 米银法, 等. 根际低氧对不同抗性牡丹植株AsA-GSH循环代谢的影响. 北方园艺, 2016(16):69-75.
[27] 王诗雅, 郑殿, 项洪涛, 等. 初花期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应. 中国农业科学, 2021, 54(2):271-285.
[28] 杨庆贺, 郑成淑. 低温弱光胁迫下外源ASA与CaCl2对菊花叶片AsA-GSH循环的影响. 山东农业大学学报(自然科学版), 2018, 49(3):495-499.
[29] Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science, 2002, 163(3):515-523.
doi: 10.1016/S0168-9452(02)00159-0
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[3] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[4] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[5] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[6] Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153.
[7] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[8] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[9] Wang Qingbin, Lu Jiechun, Peng Chun’e, Meng Hui, Liu Zhiguo, Wang Hongfeng, Zhang Min. Effects of Different Nitrogen Application Rates Combined with Extracts of Paecilomyces variotii (ZNC) on Growth and Nitrogen Uptake of Pakchoi [J]. Crops, 2022, 38(1): 190-195.
[10] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[11] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[12] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[13] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[14] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[15] Han Dezhi. Study on the Accurate Detection Method of Soybean Fried Pod Phenotype [J]. Crops, 2022, 38(1): 84-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!