Crops ›› 2024, Vol. 40 ›› Issue (2): 9-14.doi: 10.16035/j.issn.1001-7283.2024.02.002
Previous Articles Next Articles
Li Hongyan1(), Yao Xiaohua1,2, Yao Youhua1,2, Li Xin1,2, Wu Kunlun1,2()
[1] |
葸玮, 郝晨阳, 李甜, 等. 基因组时代―麦类基因组学研究现状及趋势. 植物遗传资源学报, 2022, 23(4):929-942.
doi: 10.13430/j.cnki.jpgr.20211227005 |
[2] |
Zeng X Q, Guo Y, Xu Q J, et al. Origin and evolution of qingke barley in Tibet. Nature Communications, 2018, 9(1):5433.
doi: 10.1038/s41467-018-07920-5 pmid: 30575759 |
[3] | 汪颖. 我国小麦抗旱性研究进展. 园艺与种苗, 2011(2):95-97. |
[4] |
Lachman J, Martinek P, Kotikova Z, et al. Genetics and chemistry of pigments in wheat grain-A review. Journal of Cereal Science, 2017, 74:145-154.
doi: 10.1016/j.jcs.2017.02.007 |
[5] |
Anastasiya G, Tatjana K, Mursalimov S, et al. Effects of combining the genes controlling anthocyanin and melanin synthesis in the barley grain on pigment accumulation and plant development. Agronomy, 2022, 12(1):112.
doi: 10.3390/agronomy12010112 |
[6] | 刘迎春, 周青平. 燕麦研究最新进展. 青海科技, 2011, 18(6):20-23. |
[7] |
郑殿升. 中国燕麦的多样性. 植物遗传资源学报, 2010, 11(3):249-252.
doi: 10.13430/j.cnki.jpgr.2010.03.001 |
[8] |
Bauer E, Schmutzer T, Barilar I, et al. Towards a whole-genome sequence for rye (Secale cereale L.). Plant Journal, 2017, 89(5):853-869.
doi: 10.1111/tpj.2017.89.issue-5 |
[9] | 曾雪, 杨足君, 李光蓉, 等. 非洲黑麦染色体特异性标记的建立与应用. 遗传, 2008(8):1056-1062. |
[10] | Guo T L, Horvath C, Chen L, et al. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends in Food Science & Technology, 2020, 103:109-117. |
[11] | 白羿雄, 姚晓华, 姚有华, 等. 适度水分亏缺管理提高青稞营养品质和环境效益. 植物营养与肥料学报, 2018, 24(2):499-506. |
[12] |
Yang X J, Dang B, Fan M T. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules, 2018, 23(4):879.
doi: 10.3390/molecules23040879 |
[13] | 吴昆仑. 青稞早抽穗性状的遗传分析与直链淀粉含量的分子标记. 成都: 四川农业大学, 2018. |
[14] |
王珊珊, 谷海涛, 谢慧芳, 等. 113份饲草型六倍体小黑麦种质饲草产量与品质性状的评价. 草业学报, 2023, 32(1):192-202.
doi: 10.11686/cyxb2022011 |
[15] |
Li H, Guo X X, Wang C Y, et al. Spontaneous and divergent hexaploid triticales derived from common wheat×rye by complete elimination of D-genome chromosomes. PLoS ONE, 2015, 10 (3):e0120421.
doi: 10.1371/journal.pone.0120421 |
[16] |
Abdel-Aal E S M, Young J C, Rabalski I, et al. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food Chemistry, 2006, 54(13):4696-4704.
doi: 10.1021/jf0606609 pmid: 16787017 |
[17] |
Jia Y, Selva C, Zhang Y, et al. Uncovering the evolutionary origin of blue anthocyanins in cereal grains. Plant Journal, 2020, 101(5):1057-1074.
doi: 10.1111/tpj.v101.5 |
[18] |
Zykin P A, Andreeva E A, Lykholay A N, et al. Anthocyanin composition and content in rye plants with different grain color. Molecules, 2018, 23(4):948.
doi: 10.3390/molecules23040948 |
[19] |
Burešová V, Kopecký D, Bartoš J, et al. Variation in genome composition of blue-aleurone wheat. Theoretical and Applied Genetics, 2015, 128(2):273-282.
doi: 10.1007/s00122-014-2427-3 pmid: 25399318 |
[20] | 徐萍, 张正斌, 张锦鹏, 等. 彩色小麦基因发掘和种质资源育种利用. 植物遗传资源学报, 2022, 23(6):1549-1571. |
[21] |
Strygina K V, Börner A, Khlestkina E K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biology, 2017, 17(S1):184.
doi: 10.1186/s12870-017-1122-3 |
[22] |
Barbro I S. Genetic control of flavonoid biosynthesis in barley. Hereditas, 1993, 119(2):187-204.
doi: 10.1111/j.1601-5223.1993.00187.x |
[23] |
Zeven A C. Wheats with purple and blue grains: A Review. Euphytica, 1991, 56:243-258.
doi: 10.1007/BF00042371 |
[24] |
Jia Q J, Zhu J H, Wang J M, et al. Genetic mapping and molecular marker development for the gene Pre2 controlling purple grains in barley. Euphytica, 2016, 208(2):215-223.
doi: 10.1007/s10681-015-1593-y |
[25] |
Suriano S, Iannucci A, Codianni P, et al. Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy. Food Research International, 2018, 113:221-233.
doi: S0963-9969(18)30518-0 pmid: 30195516 |
[26] |
Shoeva O Y, Mock H P, Kukoeva T V, et al. Regulation of the flavonoid biosynthesis pathway genes in purple and black grains of hordeum vulgare. PLoS ONE, 2016, 11(10):e0163782.
doi: 10.1371/journal.pone.0163782 |
[27] | Naneli I. Determination of selected engineering traits of some oat (Avena sativa L.) varieties. Fresenius Environmental Bulletin, 2022, 31(8):8214-8221. |
[28] | 苏乐平. 基于SLAF-seq的青稞黑粒基因的挖掘及候选基因的功能验证. 西宁: 青海大学, 2020. |
[29] |
Humphries J M, Graham R D, Mares D J. Application of reflectance colour measurement to the estimation of carotene and lutein content in wheat and triticale. Journal of Cereal Science, 2004, 40(2):151-159.
doi: 10.1016/j.jcs.2004.07.005 |
[30] | 李国明. 小黑麦蓝粒性状的遗传分析与候选基因的功能验证. 西宁: 青海师范大学, 2019. |
[31] | 李杏普, 兰素缺, 刘玉平. 蓝、紫粒小麦籽粒色素及其相关生理生化特性的研究. 作物学报, 2003, 29(1):157-158. |
[32] |
Sharifah N, Syed J, Johanna B, et al. Increased anthocyanin content in purple pericarp×blue aleurone wheat crosses. Plant Breeding, 2013, 132(6):546-552.
doi: 10.1111/pbr.2013.132.issue-6 |
[33] | 谢景梅, 马永甫, 胡雪琴, 等. 蓝、紫粒小麦籽粒蛋白营养及抗氧化性研究. 西南师范大学学报: 自然科学版, 2010, 35(3):197-203. |
[34] |
Wang X, Zhang X C, Hou H X, et al. Metabolomics and gene expression analysis reveal the accumulation patterns of phenylpropanoids and flavonoids in different colored-grain wheats (Triticum aestivum L.). Food Research International, 2020, 138:109711.
doi: 10.1016/j.foodres.2020.109711 |
[35] | 仇菊, 刘鹏, 孙君茂. 彩色马铃薯营养保健功能及其食品开发研究进展. 食品与机械, 2016, 32(10):226-229. |
[36] | 丁艳慧, 席杏媛, 宗渊, 等. 调控蓝色大麦花青素合成代谢的MYC基因克隆及序列分析. 分子植物育种, 2020, 18(1):25-30. |
[37] |
Liu Z H, Liu Y X, Pu Z E, et al. Regulation, evolution, and functionality of flavonoids in cereal crops. Biotechnology Letters, 2013, 35(11):1765-1780.
doi: 10.1007/s10529-013-1277-4 pmid: 23881316 |
[38] | Fairs D G. Physiology and genetics of the kernel color of barley. Columbia: University of British Columbia, 1955. |
[39] |
Dang B, Zhang W G, Zhang J, et al. Evaluation of nutritional components, phenolic composition, and antioxidant capacity of highland barley with different grain colors on the Qinghai Tibet Plateau. Foods, 2022, 11(14):2025.
doi: 10.3390/foods11142025 |
[40] |
Li L Y, Pan M, Pan S J, et al. Effects of insoluble and soluble fibers isolated from barley on blood glucose, serum lipids, liver function and caecal short-chain fatty acids in type 2 diabetic and normal rats. Food and Chemical Toxicology, 2020, 135:110937.
doi: 10.1016/j.fct.2019.110937 pmid: 31682932 |
[41] | Suriano S, Savino M, Codianni P, et al. Anthocyanin profile and antioxidant capacity in coloured barley. International Journal of Food Science & Technology, 2019, 54(7):2478-2486. |
[42] |
Lin S, Guo H, Gong J D B, et al. Phenolic profiles, beta-glucan contents, and antioxidant capacities of colored Qingke (Tibetan hulless barley) cultivars. Journal of Cereal Science, 2018, 81:69-75.
doi: 10.1016/j.jcs.2018.04.001 |
[43] |
Manisalidis I, Stavropoulou E, Stavropoulos A, et al. Environmental and health impacts of air pollution: A Review. Frontiers in Public Health, 2020, 8:14.
doi: 10.3389/fpubh.2020.00014 pmid: 32154200 |
[44] |
Jin H M, Dang B, Zhang W G, et al. Polyphenol and anthocyanin composition and activity of highland barley with different colors. Molecules, 2022, 27(11):3411.
doi: 10.3390/molecules27113411 |
[45] |
Alam M A, Islam P, Subhan N, et al. Potential health benefits of anthocyanins in oxidative stress related disorders. Phytochemistry Reviews, 2021, 20:705-749.
doi: 10.1007/s11101-021-09757-1 |
[46] | Doshi K, Eudes F, Laroche A, et al. Anthocyanin expression in marker free transgenic wheat and triticale embryos. In Vitro Cellular & Developmental Biology-Plant, 2007, 43(5):429-435. |
[47] |
Juha M P, Jarkko H, Tuula K, et al. Flavonoids, anthocyanins, phenolamides, benzoxazinoids, lignans and alkylresorcinols in rye (Secale cereale) and some rye products. Journal of Cereal Science, 2018, 79:183-192.
doi: 10.1016/j.jcs.2017.09.009 |
[48] |
Rabinovich S V. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L.. Euphytica, 1998, 100:323-340.
doi: 10.1023/A:1018361819215 |
[49] |
Khoo H E, Azlan A, Tang S T, et al. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutrition Research, 2017, 61(1):1361779.
doi: 10.1080/16546628.2017.1361779 |
[50] |
Cabrita L, Torgils F, Andersen Ø M. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chemistry, 2000, 68(1):101-107.
doi: 10.1016/S0308-8146(99)00170-3 |
[51] | Fukada T S, Inagaki Y, Yamaguchi T, et al. Colour-enhancing protein in blue petals. Nature, 2000, 407(6804):581. |
[52] |
Tanaka Y, Ohmiya A. Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Current Opinion in Biotechnology, 2008, 19(2):190-197.
doi: 10.1016/j.copbio.2008.02.015 pmid: 18406131 |
[53] | 王华, 李茂福, 杨媛, 等. 果实花青素生物合成分子机制研究进展. 植物生理学报, 2015, 51(1):29-43. |
[54] |
Garg M, Chawla M, Chunduri V, et al. Transfer of grain colors to elite wheat cultivars and their characterization. Journal of Cereal Science, 2016, 71:138-144.
doi: 10.1016/j.jcs.2016.08.004 |
[55] |
Abdel A, Ei S M, Hucl P, et al. Compositional differences in anthocyanins from blue- and purple-grained spring wheat grown in four environments in Central Saskatchewan. Cereal Chemistry, 2016, 93(1):32-38.
doi: 10.1094/CCHEM-03-15-0058-R |
[56] |
Trojan V, Musilová M, V yhnánek T, et al. Chalcone synthase expression and pigment deposition in wheat with purple and blue colored caryopsis. Journal of Cereal Science, 2014, 59(1):48-55.
doi: 10.1016/j.jcs.2013.10.008 |
[57] |
Mullick D B, Faris D G, Brink V C, et al. Anthocyanins and anthocyanidins of the barley pericarp and aleurone tissue. Canadian Journal of Plant Science, 1958, 38(4):445-456.
doi: 10.4141/cjps58-071 |
[58] |
Knievel D C, Abdel-Aal E S M, Rabalski I, et al. Grain color development and the inheritance of high anthocyanin blue aleurone and purple pericarp in spring wheat (Triticum aestivum L.). Journal of Cereal Science, 2009, 50(1):113-120.
doi: 10.1016/j.jcs.2009.03.007 |
[59] |
Hurd E A. Inheritance of blue kernel colour in wheat. Canadian Journal of Plant Science, 1959, 39(1):1-8.
doi: 10.4141/cjps59-001 |
[60] | 李振声, 穆素梅, 蒋立训, 等. 蓝粒单体小麦研究(一). 遗传学报, 1982(6):431- 439,505-506. |
[61] |
Zheng Q, Li B, Mu S M, et al. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49(9):1109-1114.
doi: 10.1139/g06-073 pmid: 17110991 |
[62] |
Yu K, Liu D C, Wu W Y, et al. Development of an integrated linkage map of einkorn wheat and its application for QTL mapping and genome sequence anchoring. Theoretical and Applied Genetics, 2017, 130(1):53-70.
doi: 10.1007/s00122-016-2791-2 pmid: 27659843 |
[63] |
Singh K, Ghai M, Garg M, et al. An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum×T. monococcum RIL population. Theoretical and Applied Genetics, 2007, 115(3):301-312.
doi: 10.1007/s00122-007-0543-z |
[64] |
Shen Y F, Shen J, Dawadondup, et al. Physical localization of a novel blue-grained gene derived from Thinopyrum bessarabicum. Molecular Breeding, 2013, 31(1):195-204.
doi: 10.1007/s11032-012-9783-y |
[65] |
Li J B, Lang T, Li B, et al. Introduction of Thinopyrum intermedium ssp. trichophorum chromosomes to wheat by trigeneric hybridization involving Triticum, Secale and Thinopyrum genera. Planta, 2017, 245(6):1121-1135.
doi: 10.1007/s00425-017-2669-9 |
[66] |
Liu X, Zhang M H, Jiang X M, et al. TbMYC4A is a candidate gene controlling the blue aleurone trait in a wheat-Triticum boeoticum substitution line. Frontiers in Plant Science, 2021, 12:762265.
doi: 10.3389/fpls.2021.762265 |
[67] | 王青. 百萨偃麦草4J染色体长臂DNA序列分析及其蓝粒基因精细定位. 南京: 南京农业大学, 2020. |
[68] | 彭琴, 周军, 徐如宏, 等. 小麦种质GLM 1701蓝粒性状的遗传定位分析. 种子, 2020, 39(12):25-31. |
[69] | Diddugodage C J. 蓝粒小麦中花青素生物合成基因的基因定位及转录组分析. 杨凌: 西北农林科技大学, 2017. |
[70] | Voylokov A V, Lykholay A N, Smirnov V G. Genetic control of anthocyanin coloration in rye. Russian Journal of Genetics: Applied Research, 2015, 5:262-267. |
[71] |
Xu D D, Dondup D, Dou T Y, et al. HvGST plays a key role in anthocyanin accumulation in colored barley. Plant Journal, 2022, 113(1):47-59.
doi: 10.1111/tpj.v113.1 |
[72] |
Zong Y, Li G M, Xi X Y, et al. A bHLH transcription factor TsMYC 2 is associated with the blue grain character in triticale (Triticum×Secale). Plant Cell Reports, 2019, 38(10):1291-1298.
doi: 10.1007/s00299-019-02449-3 |
[73] |
Zhao S, Xi X Y, Zong Y, et al. Overexpression of ThMYC4E enhances anthocyanin biosynthesis in common wheat. International Journal of Molecular Sciences, 2019, 21(1):137.
doi: 10.3390/ijms21010137 |
[74] |
Zhang S M, Sun F L, Zhang C Q, et al. Anthocyanin biosynthesis and a regulatory network of different-colored wheat grains revealed by multiomics analysis. Journal of Agricultural and Food Chemistry, 2022, 70(3):887-900.
doi: 10.1021/acs.jafc.1c05029 pmid: 35029408 |
[75] |
Castellarin S D, Di G G, Marconi R, et al. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation,expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin- based anthocyanins in berry skin. BMC Genomics, 2006, 7:12.
pmid: 16433923 |
[76] |
Li N, Li S M, Zhang K P, et al. ThMYC4E, candidate Blue aleurone 1 gene controlling the associated trait in Triticum aestivum. PLoS ONE, 2017, 12(7):e0181116.
doi: 10.1371/journal.pone.0181116 |
[77] | Finch R A, Simpson E. New colours and complementary colour genes in barley. Zeitschrift Fuer Pflanzenzuechtung, 1978, 81 (1):40-53. |
[78] |
Zhang G Q, Xue W H, Dai J, et al. Quantitative proteomics analysis reveals proteins and pathways associated with anthocyanin accumulation in barley. Food Chemistry, 2019, 298:124973.
doi: 10.1016/j.foodchem.2019.124973 |
[79] | 裴嘉伟, 马力耕. 小麦籽粒蓝色基因及应用研究进展. 科学通报, 2022, 67(26):3110-3118. |
[80] | 苏乐平, 姚晓华, 吴昆仑, 等. 大麦(青稞)籽粒颜色相关研究进展. 江苏农业科学, 2019, 47(18):70-74. |
[81] |
Yao X H, Wu K L, Yao Y H, et al. Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley. Hereditas, 2018, 155:37.
doi: 10.1186/s41065-018-0072-6 |
[82] | 丁艳慧. BSA·QTL-seq分离控制青稞蓝粒性状的可能性候选基因HvMYC1和HvMYB1. 西宁: 青海师范大学, 2019. |
[1] | Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121. |
[2] | Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147. |
[3] | Li Sijun, Bi Yiming, Hou Jianlin, Wu Wenxin, Deng Xiaoqiang, Jiang Zhimin, Tian Yunong, Hao Xianwei, Zhang Cheng, Zhu Lin, Xia Bin, Deng Xiaohua. Study on the Flue-Curing Processes in the Intensive Curing House Suitable for the Harvesting at One Time of Six Middle Leaves of Paddy-Tobacco [J]. Crops, 2024, 40(2): 158-164. |
[4] | Xie Jin, Li Jincheng, Liang Zengfa, Huang Hao, Zhang Xi, Gao Renji, Jin Baofeng, Zeng Fandong, Lu Zhiwei, Cai Yixia, Wang Wei. Effects of Ridging Height and Ratio of Organic Fertilizer on Root Growth and Quality of Upper Tobacco Leaves [J]. Crops, 2024, 40(2): 165-171. |
[5] | Chen Lin, Yao Xiaohua, Yao Youhua, Bai Yixiong, Wu Kunlun. Diversity Analysis of Grain Appearance and Quality Traits of Hulless Barley Varieties on the Qinghai-Tibet Plateau [J]. Crops, 2024, 40(2): 213-220. |
[6] | Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79. |
[7] | Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125. |
[8] | Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140. |
[9] | Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Wang Yanjie, Zhao Guangcai. Effects of Nitrogen Dressing Time and Proportion on Wheat Grain Filling and Its Physiological Mechanism [J]. Crops, 2024, 40(1): 174-179. |
[10] | Hao Xiaocong, Li Xinyu, Hou Qiling, Yang Jifang, An Chunhui, Wang Changhua, Ye Zhijie, Zhang Fengting. Effects of Nitrogen Application Rate on the Quality of Two-Line Hybrid Wheat [J]. Crops, 2024, 40(1): 187-192. |
[11] | Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228. |
[12] | Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149. |
[13] | Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201. |
[14] | Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223. |
[15] | Zhao Lijie, Zhao Haiyan, Han Genlan, Wang Jiang, Nie Mengʼen, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen Fertilizer Combined with Organic Fertilizer on Quality of Millet [J]. Crops, 2023, 39(6): 224-232. |
|