Crops ›› 2024, Vol. 40 ›› Issue (3): 141-147.doi: 10.16035/j.issn.1001-7283.2024.03.018

Previous Articles     Next Articles

Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato

Chen Biwei1(), Ju Xikai1, Sun Yiming1, Li Qinghua2, Liu Qing1(), Zeng Lusheng1   

  1. 1College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, Shandong, China
    2Qingdao Shengtang Agricultural Technology Limited Company, Qingdao 266109, Shandong, China
  • Received:2023-02-20 Revised:2023-03-05 Online:2024-06-15 Published:2024-06-18

Abstract:

In order to study the effects of drought treatment in different periods on the yield formation and starch gelatinization characteristics of starchy sweet potatoes, four different periods of drought were set up under controlled water conditions for the starchy sweet potato varieties Shangshu 19 and Yanshu 29, the root development and branching period (early stage), the vine development period (middle stage), the tuber expansion period (late stage) and normal watering during the whole reproductive period (CK). The results showed that the shoot biomass of Shangshu 19 were reduced by 35.7%, 18.7% and 11.4%, respectively, and the root biomass were reduced by 55.4%, 36.1% and 20.8%, respectively, compared with the CK in different periods of drought treatment. The shoot biomass of Yanshu 29 were reduced by 47.4%, 20.9% and 13.8%, respectively, and the root biomass were reduced by 60.2%, 49.9% and 15.1%, respectively. Compared with the control, drought in different periods made sweet potato yield reduction, the yield of dried sweet potatoes decreased with 14.3%, 1.8% and 3.6% for Shangshu 19, and 20.0%, 6.9% and 5.7% for Yanshu 29. Drought stress in different periods could reduce the starch yield and increase the dry matter yield, and the dry matter yield of potato was the highest during the root expansion period, which were increased by 10.6% and 8.7% compared with the CK for Shangshu 19 and Yanshu 29, respectively. The starch content of root initiation stage was the lowest, which were 11.8% and 16.4% lower than that of the CK in Shangshu 19 and Yanshu 29, respectively. Drought stress affected starch gelatinization characteristics in different periods, and drought at the middle and late stages could improve starch quality, but persistent drought significantly reduced starch gelatinization parameters.

Key words: Starchy sweet potato, Dry period, Yield, Starch, Pasting properties

Table 1

Setting of soil relative water content under drought stress at different growth stages of sweet potato %"

处理
Treatment
发根分枝期
Root branching stage (0~60 d)
薯蔓并长期
The potato and vine growth together stage (61~90 d)
块根膨大期
Tuber expansion stage (91~120 d)
CK 70±5 70±5 70±5
T1 35±5 70±5 70±5
T2 70±5 35±5 70±5
T3 70±5 70±5 35±5

Fig.1

Effects of drought stress at different stages on biomass of aboveground and underground parts in sweet potato Different lowercase letters indicate significant difference at the P < 0.05 level, the same below."

Fig.2

Effects of drought stress at different stages on the number and weight of sweet potato per plant"

Table 2

Effects of drought stress in different periods on starch percentage of sweet potato"

品种
Variety
处理
Treatment
鲜薯产量
Fresh potato
yield (kg/hm2)
薯干产量
Dried potato
yield (kg/hm2)
薯块干物率
Potato dry matter
content (%)
薯干增产率
Yield increase
(%)
淀粉率
Starch ratio
(%)
商薯19号
Shangshu 19
CK 33 846.0±51.3a 9544.5±11.76a 28.2±0.48c 22.8±0.33a
T1 28 573.5±52.6c 8172.0±11.71c 28.6±0.14c -14.3±0.25c 20.1±0.17c
T2 31.8.5±67.5b 9372.0±16.61ab 30.1±0.30b -1.8±0.15a 20.2±0.27c
T3 29 476.5±98.8bc 9196.5±5.99b 31.2±0.32a -3.6±0.10b 21.4±0.24b
烟薯29号
Yanshu 29
CK 31 849.5±33.2a 9612.0±13.83a 29.9±0.31c 24.4±0.51a
T1 26 547.0±54.7c 8043.0±2.80c 30.3±0.05b -16.3±0.45c 20.4±0.17c
T2 28 669.5±57.8b 8928.0±9.24b 30.5±0.19b -7.1±0.32b 20.5±0.25c
T3 28 458.0±23.2b 9249.0±5.50ab 32.5±0.32a -3.8±0.12a 21.1±0.11b

Table 3

Effects of drought stress in different periods on starch pasting properties of sweet potato starch"

品种 处理
Treatment
峰值黏度
Peak
viscosity (cP)
谷值黏度
Valley
viscosity (cP)
崩解黏度
Breakdown
(cP)
最终黏度
Final
viscsity (cP)
回生黏度
Setback (cP)
糊化温度
Pasting
temperature (℃)
峰值时间
Peak time
(min)
商薯19号
Shangshu 19
CK 5550±18b 2432±25b 3118±43b 3637±21b 1175±26c 82.55±0.06a 4.67±0.04b
T1 5541±17b 2402±17b 3139±21b 3641±11b 1239±28b 81.88±0.87b 4.56±0.06bc
T2 5893±9a 2579±15a 3313±24a 3882±12a 1303±24a 80.27±0.64c 4.46±0.03c
T3 5292±30c 2257±13c 3035±19c 3442±24c 1185±20c 80.33±0.60c 4.72±0.07a
烟薯29号
Yanshu 29
CK 5778±4b 2307±2c 3471±3b 3521±10b 1214±9c 80.25±0.43ab 4.49±0.02b
T1 5705±26b 2416±16b 3289±13c 3656±28a 1240±43ab 80.02±0.12b 4.67±0.04a
T2 5890±14a 2428±13a 3462±10b 3661±9a 1232±17b 80.65±0.14a 4.65±0.02a
T3 5945±19a 2429±11a 3516±15a 3686±16a 1257±26a 79.07±0.17c 4.71±0.02a
[1] 王欣, 李强, 曹清河, 等. 中国甘薯产业和种业发展现状与未来展望. 中国农业科学, 2021, 54(3):483-492.
doi: 10.3864/j.issn.0578-1752.2021.03.003
[2] Food and Agriculture Organization. FAOSTAT agriculture data. (2022-03-10) [2023-02-20].http://www.fao.org/faostat/en.
[3] 陈喜, 陆建珍, 汪翔, 等. 中国甘薯生产布局变迁及动因分析. 中国农业资源与区划, 2022, 43(2):1-12.
[4] 沈升法, 项超, 吴列洪, 等. 浙江省甘薯种质资源的品质鉴定与聚类分析. 植物遗传资源学报, 2021, 22(1):247-259.
[5] 张超, 柳平增. 我国甘薯市场与产业调查分析报告. 农产品市场, 2021(20):50-51.
[6] 井水华. 鲁南丘陵旱薄地甘薯高产高效栽培技术研究. 泰安: 山东农业大学, 2016.
[7] Babajide O O, Patrick O A, David M, et al. Greenhouse and field evaluation of selected sweet potato [Ipomoea batatas (L.) LAM] accessions for drought tolerance in South Africa. American Journal of Plant Sciences, 2014, 5(21):3328-3339.
[8] 张海燕, 段文学, 解备涛, 等. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系. 作物学报, 2018, 44(1):126-136.
[9] 王金强, 李欢, 刘庆, 等. 干旱胁迫对甘薯苗期根系分化和生理特性的影响. 应用生态学报, 2019, 30(9):3155-3163.
[10] 李长志, 李欢, 刘庆, 等. 不同生长时期干旱胁迫甘薯根系生长及荧光生理的特性比较. 植物营养与肥料学报, 2016, 22 (2):511-517.
[11] 张海燕, 解备涛, 段文学, 等. 不同时期干旱胁迫对甘薯光合效率和耗水特性的影响. 应用生态学报, 2018, 29(6):1943- 1950.
doi: 10.13287/j.1001-9332.201806.024
[12] Roy C, Remya M, Subha S, et al. Growth dry-matter partitioning and yield of sweet potato (Ipomoea batatas L.) as influenced by soil mechanical impedance and mineral nutrition under different irrigation regimes. Advances in Horticultural Science, 2002, 16 (1):25-29.
[13] 王金强, 李欢, 刘庆, 等. 干旱胁迫下喷施外源植物激素对甘薯生理特性和产量的影响. 应用生态学报, 2020, 31(1):189-198.
doi: 10.13287/j.1001-9332.202001.026
[14] 唐忠厚, 李洪民, 张爱君, 等. 施钾对甘薯常规品质性状及其淀粉RVA特性的影响. 浙江农业学报, 2011, 23(1):46-51.
[15] 冯玉钿. 土壤含水量对马铃薯淀粉形成及产量的影响. 大庆: 黑龙江八一农垦大学, 2015.
[16] 张瑞栋, 高铭悦, 岳忠孝, 等. 灌浆期不同阶段干旱对高粱籽粒淀粉积累的影响. 作物杂志, 2021(4):172-177.
[17] 苗建利, 王晨阳, 郭天财, 等. 高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响. 麦类作物学报, 2008, 28(2):254-259.
[18] 宋霄君, 张敏, 武雪萍, 等. 干旱胁迫对小麦不同品种胚乳淀粉结构和理化特性的影响. 中国农业科学, 2017, 50(2):260-271.
doi: 10.3864/j.issn.0578-1752.2017.02.006
[19] Zhang T, Wang Z, Yin Y, et al. Starch content and granule size distribution in grains of wheat in relation to post‐anthesis water deficits. Journal of Agronomy and Crop Science, 2010, 196(1):1-8.
[20] 孙哲, 史春余, 刘桂玲, 等. 干旱胁迫与正常供水钾肥影响甘薯光合特性及块根产量的差异. 植物营养与肥料学报, 2016, 22(4):1071-1078.
[21] 许育彬, 陈越, 付增光. 甘薯的抗旱生理及栽培技术研究进展. 干旱地区农业研究, 2004(1):128-131.
[22] 张海燕, 汪宝卿, 冯向阳, 等. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响. 作物学报, 2020, 46(11):1760-1770.
doi: 10.3724/SP.J.1006.2020.04079
[23] 李鑫. 干旱胁迫下粉葛根细胞淀粉粒积累及葛藤逆境生理响应. 贵阳: 贵州大学, 2021.
[24] 余树玺, 邢丽君, 木泰华, 等. 4种不同甘薯淀粉成分、物化特性及其粉条品质的相关性研究. 核农学报, 2015, 29(4):734-742.
doi: 10.11869/j.issn.100-8551.2015.04.0734
[25] 王晨阳, 何英, 方保停, 等. 小麦籽粒淀粉合成、淀粉特性及其调控研究进展. 麦类作物学报, 2005, 25(1):109-114.
[26] 王晨阳, 冀天会, 郭天财, 等. 干旱胁迫对春小麦淀粉糊化特性的影响. 河南农业科学, 2008(8):32-37.
doi: 10.3969/j.issn.1004-3268.2008.08.007
[27] 苗建利. 高温与干旱胁迫对小麦籽粒GBSS活性、淀粉品质及产量的影响. 郑州: 河南农业大学, 2008.
[28] 王晨阳, 苗建利, 张美微, 等. 高温、干旱及其互作对两个筋力小麦品种淀粉糊化特性的影响. 生态学报, 2014, 34(17):4882-4890.
[29] Sandeep S, Gurpreet S, Prabhjeet S, et al. Effect of water stress at different stages of grain development on the characteristics of starch and protein of different wheat varieties. Food Chemistry, 2008, 108(1):130-139.
[1] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[2] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[3] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[4] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
[5] Yi Qin, Huang Miao, Yang Guotao, Hu Yungao, Chen Hong, Wang Xuechun. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Rapeseed in Sichuan [J]. Crops, 2024, 40(3): 163-167.
[6] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[7] Li Zhi, Guo Xiaoxia, Huang Chunyan, Jian Caiyuan, Tian Lu, Han Kang, Ren Xiaoyun, Ren Huimin, Zhang Peng, Liu Jia, Kong Dejuan, Wang Zhenzhen, Su Wenbin. Effects of Nitrogen Base Fertilizer and Topdressing Ratio on the Growth, Yield and Sugar Content of Sugar Beet under Shallow Buried Drip Irrigation [J]. Crops, 2024, 40(3): 186-191.
[8] Ou Kunpeng, Wang Xueli, Wang Yan, He Minghui, Huang Liankang, Zheng Debo, Lin Qian. Effects of Different Proportions of Nitrogen, Phosphorus and Potassium on Photosynthetic Characteristics, Yield and Quality of Pueraria lobata var. thomsonii [J]. Crops, 2024, 40(3): 216-222.
[9] Xu Rongqiong, Zhang Yifei, Du Jiarui, Yin Xuewei, Yang Kejun, Sun Yishan, Li Zesong, Li Guibin, Lu Yuxin, Liu Haichen, Li Weiqing, Li Jiayu. Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize [J]. Crops, 2024, 40(3): 223-230.
[10] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[11] Xie Zhangshu, Xie Xuefang, Zhou Chengxuan, Xu Doudou, Li Jiarui, Tu Xiaoju, Liu Aiyu, Li Fei, Gong Yangcang, He Yunxin, Wei Shangzhi, Wu Bibo, Zhou Zhonghua. A New Cotton Seed Balling Technology and Its Influence on Cotton Seedling Emergence, Yield and Quality [J]. Crops, 2024, 40(3): 257-264.
[12] Hu Qingyuan, Gong Dan, Pan Xiaowei, Wang Suhua, Wang Lixia. Joint Identification of New Varieties (Lines) of Cowpea during 2019-2021 Organized by China Agricultural Research System of Food Legume [J]. Crops, 2024, 40(3): 76-81.
[13] Wang Shen, Fan Baojie, Liu Changyou, Wang Yan, Zhang Zhixiao, Su Qiuzhu, Shi Huiying, Shen Yingchao, Wang Xueqing, Tian Jing. Identification and Evaluation of Yield and Main Agronomic Characteristics of New Mung Bean Varieties [J]. Crops, 2024, 40(3): 90-99.
[14] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[15] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!