Crops ›› 2024, Vol. 40 ›› Issue (5): 119-124.doi: 10.16035/j.issn.1001-7283.2024.05.017

Previous Articles     Next Articles

Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp

Wang Shanshan1(), Yang Yulei1, Liu Feihu1, Yang Yang1, Tang Kailei1, Li Tao2, Niu Longjiang2, Du Guanghui1()   

  1. 1Institute of Resource Plant, Yunnan University, Kunming 650500, Yunnan, China
    2Yunnan Hanshengfeng Industrial Hemp Cultivation Co., Ltd., Qujing 650217, Yunnan, China
  • Received:2023-04-24 Revised:2023-11-10 Online:2024-10-15 Published:2024-10-16

Abstract:

In order to explore the effects of polyazole spraying treatment on the yield and cannabidiol (CBD) content of industrial hemp inflorescence and leaves, the Yunma 8 was taken as the experimental material, five polyazole concentrations (C0: 0 mg/L, C1:100 mg/L, C2: 200 mg/L, C3: 300 mg/L, and C4: 400 mg/L) and two treatment periods (T1: the early stage of rapid growth, T2: the middle and late stages of rapid growth) were set in this study. Through the measurement and analysis of agronomic and yield traits, the most effective polyazole treatment concentration and period for increasing the yield and CBD content of industrial hemp inflorescence and leaves were screened. The results showed that 200 mg/L polyazole had the most significant effects on reducing the plant height of Yunma 8 and increasing its stem thickness and the number of branches at T1 period. From the results of the yield traits, with the increase of polyazole concentration, the yield of inflorescence, leaves and stems of industrial hemp all showed a trend of first increasing and then decreasing at both the T1 and T2 periods. Among them, the yield of industrial hemp reached the highest value under C2T1 treatment, with a yield of 3642.22 kg/ha for inflorescence and leaves. With the increase of polyazole concentration, CBD content of industrial hemp showed a trend of first increasing and then decreasing at the both periods. Among them, the highest CBD content was 3.53% by 200 mg/L polyazole treatment at T1 period. Based on the above results, it can be concluded that C2T1 (200 mg/L and the early stage of rapid growth) treatment was the optimal treatment combination in this study.

Key words: Industrial hemp, Polyazole, Treatment concentration, Spraying period, Agronomic traits, Inflorescence and leaves yield, Cannabidiol content

Fig.1

Effects of the concentrations and periods of polyazole on the agronomic traits of Yunma 8 Different lowercase letters indicate significant differences between different concentration treatments (P < 0.05), the same below."

Fig.2

Effects of the concentrations and periods of polyazole on the dry weight per male plant of Yunma 8"

Fig.3

Effects of the concentrations and periods of polyazole on the dry weight per female plant of Yunma 8"

Fig.4

Effects of the concentrations and periods of polyazole on the yield of Yunma 8"

Fig.5

Effects of the concentrations and periods of polyazole on the CBD contents of Yunma 8"

[1] 车野, 郭丽, 王明泽, 等. 我国工业大麻发展现状及存在的问题. 黑龙江农业科学, 2022(9):105-110.
[2] 王怀鹏. 我国工业大麻产业发展概述. 安徽农学通报, 2021, 27(16):61-62.
[3] 欧景, 王佳音, 孟园园, 等. 硼和镁元素缺乏对工业大麻生长及大麻二酚(CBD)含量的影响. 云南大学学报(自然科学版), 2022, 44(6):1314-1320.
[4] 刘飞虎, 杜光辉, 杨阳, 等. 花叶用工业大麻绿色高效栽培技术. 昆明: 云南大学出版社,2020:1-2,9-12.
[5] 张晓艳, 孙宇峰, 韩承伟, 等. 我国工业大麻产业发展现状及策略分析. 特种经济动植物, 2019, 22(8):26-28.
[6] Taura F, Sirikantaramas S, Shoyama Y, et al. Phytocannabinoids in Cannabis sativa: recent studies on biosynthetic enzymes. Chemistry & Biodiversity, 2007, 4(8):1649-1663.
[7] Perez J, Ribera M V. Managing neuropathic pain with Sativex®: a review of its pros and cons. Expert Opinion on Pharmacotherapy, 2008, 9(7):1189-1195.
[8] 高宝昌, 孙宇峰, 张旭, 等. 工业大麻叶中大麻二酚含量分析研究. 黑龙江科学, 2018, 9(1):61-63.
[9] Franco V, Perucca E. Pharmacological and therapeutic properties of cannabidiol for epilepsy. Drugs, 2019, 79(13):1435-1454.
doi: 10.1007/s40265-019-01171-4 pmid: 31372958
[10] Maccallum C A, Russo E B. Practical considerations in medical cannabis administration and dosing. European Journal of Internal Medicine, 2018,49:12-19.
[11] 史关燕, 杨成元, 李会霞, 等. 多效唑喷施浓度及时期对谷子性状及品质的影响. 农学学报, 2015, 5(8):31-35.
doi: 10.11923/j.issn.2095-4050.cjas15050010
[12] 任廷波, 赵继献. 氮肥和多效唑喷施时期互作对优质杂交油菜株型及产量性状的影响. 安徽农业科学, 2012, 40(24):11993-11995.
[13] 张恩和, 胡恒觉. 多效唑的作用机理及应用效果. 世界农业, 1996(1):20-22.
[14] 魏世林, 杨溥原, 梁红凯, 等. 多效唑对高粱生长发育及生理的影响. 热带亚热带植物学报, 2021, 29(2):201-208.
[15] 汤红玲. PP333对马铃薯生长的影响及在生产上的应用. 中国马铃薯, 2002, 16(3):152-153.
[16] 李智明. 多效唑对亚麻的增产效应研究初报. 甘肃农业科技, 1993(4):11-12.
[17] 郭媛, 邱财生, 龙松华, 等. 多效唑对亚麻农艺性状及抗倒伏性的影响. 南方农业学报, 2015, 46(10):1780-1785.
[18] 中华人民共和国农业农村部. 工业大麻种子第1部分:品种:NY/T 3252.1-2018. 北京:中国农业出版社,2018.
[19] 张晓艳, 孙宇峰, 曹焜, 等. 纤用工业大麻雌雄株主要农艺性状的初步研究. 中国农学通报, 2020, 36(20):1-6.
doi: 10.11924/j.issn.1000-6850.casb20190500123
[20] 陈丹丹, 徐小林, 李大明, 等. 多效唑喷施浓度和时间对双季晚稻秧苗生长的影响. 农学学报, 2020, 10(2):7-11.
doi: 10.11923/j.issn.2095-4050.cjas20190800172
[21] 夏雪伟. 多效唑对两种大麻(Cannabis sativa L.)生长及镉吸收的影响. 南京:南京农业大学, 2012.
[22] 李冬梅, 李明, 付兴, 等. 亚麻化学控制栽培技术体系研究进展. 中国麻业, 2005, 27(3):157-159.
[23] 曾成, 邓光宙, 娄兵海, 等. 外源赤霉素和多效唑对西红花农艺性状和生理特性的影响. 分子植物育种. (2022-10-14) [2023-04-20]. http://kns.cnki.net/kcms/detail/46.1068.S.20221014.1449.006.html.
[24] 李雪. 截干和喷施多效唑对四川桤木种实产量和质量的影响. 成都: 四川农业大学 2022.
[25] 刘皖慧. 多效唑对不同品种苎麻农艺性状及生理特性的影响. 长沙: 湖南农业大学 2021.
[26] 寇爽, 宋峥, 郑雪坳, 等. 五种植物生长调节剂及硼酸对马铃薯微型薯生产及休眠期的影响. 中国马铃薯, 2017, 31(2):65-70.
[27] 鱼冰星, 王宏富, 杨净. 多效唑和乙烯利对农大8号谷子产量的影响. 江苏农业科学, 2020, 48(24):67-72.
[28] 郭孟璧, 陈璇, 郭鸿彦, 等. 不同光质对工业大麻生长及其抗癫痫成分大麻二酚积累的影响. 中药材, 2019, 42(10):2220-2225.
[29] 刘飞虎, 毛敬淞, 汤开磊, 等. 花叶用工业大麻扦插育苗全雌栽培优势分析. 中国麻业科学, 2022, 44(1):33-36.
[30] 王雅妮, 曾粮斌, 汪洪鹰, 等. 温度对工业大麻生长及大麻二酚含量的影响. 湖南农业科学, 2021(10):27-31.
[31] 周日秀, 肖晓, 李焱瑶, 等. 多效唑对两个菜用甘薯品种生理生化特性影响的研究. 种子, 2020, 39(3):86-91.
[32] 杜友, 魏民, 马召, 等. 多效唑对柽柳和管花肉苁蓉物质分配的调控作用. 中国农业大学学报, 2013, 18(6):107-112.
[33] 王鼎豪. NAA和多效唑对银杏叶黄酮和萜内酯合成与积累的影响. 南京: 南京林业大学 2021.
[34] 吴姗. 外源激素对大麻中大麻素含量的影响及转录组分析. 北京: 中国农业科学院, 2020.
[1] Li Junzhi, Wang Xiaodong, Dou Shuang, Xin Zongxu, Wu Hongsheng, Zhou Yufei, Xiao Jibing. Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition [J]. Crops, 2024, 40(5): 175-180.
[2] Ma Yanhua, Sun Dequan, Li Suiyan, Lin Hong, Pan Liyan, Li Donglin, Fan Jinsheng, Wu Jianzhong, Yang Guowei. Comprehensive Evaluation of Main Agronomic Traits and Screening of Excellent Germplasms of Maize Landraces in Heilongjiang Province [J]. Crops, 2024, 40(4): 103-112.
[3] Ren Liang, Fang Mengying, Wu Zhihai, Dong Xuerui, Lu Lin, Yan Peng, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium (ECK) on Sorghum [Sorghum bicolor (L.) Moench.] Lodging Resistance and Yield [J]. Crops, 2024, 40(4): 164-171.
[4] Li Hu, Wu Zishuai, Liu Guanglin, Luo Qunchang, Chen Chuanhua, Zhu Qinan. Effects of Different Cultivation Conditions on Cadmium Content of Grains and Main Characteristics in Rice [J]. Crops, 2024, 40(4): 203-208.
[5] Li Chunhua, Wu Han, Jiayangduola , Wang Chunlong, Wang Yanqing, Ren Changzhong. Effects of Sowing Date on Agronomic Traits and Yield of Common Buckwheat Varieties (Lines) [J]. Crops, 2024, 40(4): 216-222.
[6] Song Quanhao, Cao Yanwei, Jin Yan, Xiao Yonggui, Song Jiajing, Zhao Lishang, Chen Jie, Bai Dong, Zhu Tongquan. Comprehensive Evaluation of 50 Wheat Germplasm Resources Derived from ICARDA [J]. Crops, 2024, 40(4): 54-61.
[7] Xie Huifang, Wei Menghan, Song Zhongqiang, Liu Jinrong, Wang Suying, Xing Lu, Wang Shujun, Liu Haiping, Jia Xiaoping, Song Hui. Analyzing of the Mixed Inheritance Model of Major Gene Plus Polygene of Main Traits in Foxtail Millet [J]. Crops, 2024, 40(4): 82-89.
[8] Bao Xuelian, Wen Feng, Jin Xiaoguang, Hu Ruimei, Huang Qianjing, Zhang Guihua, Qi Jinquan, Bai Yingzhe, Wuyuehan , Baiyilatu . Adaptability Analysis of Different Millet Varieties in the Main Grain-Producing Areas of Eastern Inner Mongolia [J]. Crops, 2024, 40(3): 201-206.
[9] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
[10] Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228.
[11] Sun Yuantao, Long Wenjing, Li Yuan, Liu Tianpeng, Zhao Ganlin, Ding Guoxiang, Ni Xianlin. Genetic Diversity Analysis of 45 Glutinous Sorghum Germplasms Based on Major Agronomic Traits and SSR Markers [J]. Crops, 2024, 40(1): 57-64.
[12] Zhao Feng, Bao Qijun, Pan Yongdong, Liu Xiaoning, Zhang Huayu, Niu Xiaoxia. Comprehensive Evaluation of Genetic Diversity in 70 Barley Germplasms [J]. Crops, 2023, 39(6): 54-61.
[13] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[14] Liu Hui, Long Xueyi, Jiao Yan, Wang Lihong. Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield [J]. Crops, 2023, 39(5): 238-248.
[15] Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!