Crops ›› 2024, Vol. 40 ›› Issue (5): 110-118.doi: 10.16035/j.issn.1001-7283.2024.05.016

Previous Articles     Next Articles

Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean

Sun Guangxu1(), Liu Ying1, Wang Xinyi1, Kong Deyong1, Wei Na1, Xing Liwen1, Guo Wei1,2()   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Heilongjiang Key Laboratory of Modern Agricultural Cultivation Technology and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
  • Received:2023-04-17 Revised:2023-11-09 Online:2024-10-15 Published:2024-10-16

Abstract:

Synchronizing seed yield and quality through fine field management and nutritional control is an effective way to improve the comprehensive benefits of kidney bean cultivation. In this study, a two-factor split-zone experimental design was used to set up three population densities [2.0×105 plants (D1), 2.3×105 plants (D2), and 2.6×105 plants/ha (D3)] and five concentrations of fulvic acid sprayed at the flowering stage [0 (C0), 0.37 (C1), 0.45 (C2), 1.12 (C3) and 1.50 kg/ha (C4)] for a total of 15 treatments. The results showed that: in the year with poor growing conditions and low yield level (2021), the differences in yield per plant were small, and the seed yield increased with planting density; in the full-grown and productive condition (2022), the average number of pods and grains per plant under the thinning treatment increased by 4.5 and 21.1 grains, respectively, compared with the conventional density, which resulted in an increase in the average yield by 27.6%. Unfavorable growth conditions resulted in enhanced seed protein synthesis, reduced flavonoid and saponin content, but increased total phenolic content. Foliar spraying of fulvic acid increased grain filling vigor and contributed to yield formation in kidney bean under unfavorable growth conditions, whereas it had no yield- enhancing effect under favorable growth conditions, but promoted the synthesis of efficacy components in the grains, especially in the C4 treatment, where the mean flavonoids and saponins contents in 2022 were increased by 11.1% and 16.3%, respectively, compared with the control. In a comprehensive analysis, using a population of 2.0×105 plants/ha under the production conditions of the experimental area, while spraying 0.45 kg/ha of fulvic acid at the flowering stage of kidney beans, can stabilize the quality of kidney bean and increase the seed yield at the same time.

Key words: Planting density, Fulvic acid, Kidney bean, Yield, Grain quality

Fig.1

Precipitation during growth period in the test site"

Table 1

Soil nutrient content of the test site mg/kg"

年份
Year
碱解氮
Alkali-hydrolyzable
nitrogen
速效磷
Available
phosphorus
速效钾
Available
potassium
pH
2021 192 36 147 5.9
2022 206 31 161 5.9

Table 2

Effects of population density and fulvic acid on yield of kidney bean grain yield and its components in 2021"

处理
Treatment
密度(万株/hm2
Density (×104 plant/hm2)
单株荚数
Pod number per plant
单株粒数
Grain number per plant
百粒重
100-grain weight (g)
单株产量
Yield per plant (g)
产量
Yield (kg/hm2)
D1 19.99±0.40c 9.69±0.99a 26.11±2.02a 41.74±1.59c 9.09±0.38b 2043±142.95c
D2 23.60±0.38b 9.27±0.85a 25.25±3.27a 43.47±2.54b 10.67±1.56a 2587±229.51b
D3 26.62±0.53a 8.88±0.92a 23.01±2.75b 46.26±1.59a 10.41±1.87a 3025±297.67a
C0 23.71±2.50a 8.48±0.42b 25.45±2.27a 43.37±1.92a 9.60±1.25b 2587±429.09ab
C1 23.83±3.52a 10.23±0.14a 27.81±0.84a 44.93±0.78a 11.95±1.09a 2906±167.91a
C2 23.43±2.89a 8.51±0.74b 22.11±2.53b 42.34±1.31b 9.14±0.56b 2247±139.02b
C3 23.55±3.11a 9.01±0.78ab 21.74±0.93b 43.44±2.97ab 9.08±0.40b 2242±145.96b
C4 23.91±2.94a 10.16±0.69a 26.83±1.51a 43.03±3.58ab 10.52±1.41ab 2777±158.89a

Table 3

Effects of population density and fulvic acid on yield of kidney bean grains and its components in 2022"

处理
Treatment
密度(万株/hm2
Density (×104 plant/hm2)
单株荚数
Pod number per plant
单株粒数
Grain number per plant
百粒重
100-grain weight (g)
单株产量
Yield per plant (g)
产量
Yield (kg/hm2)
D1 19.86±0.39c 16.03±2.17a 61.22±10.11a 40.51±1.51a 28.77±3.73a 4888±486.46a
D2 23.45±0.42b 11.52±1.39b 40.07±4.81b 39.52±0.44a 18.81±1.78b 3537±315.25b
D3 26.32±0.46a 12.04±1.21b 40.04±5.96b 39.45±0.96a 18.49±2.81b 3640±753.96b
C0 23.25±2.63a 14.66±1.74a 53.40±9.03a 39.69±0.99a 24.69±2.66a 4850±768.18a
C1 23.16±2.51a 12.20±0.09b 42.08±2.85b 40.87±1.54a 20.19±1.46b 4046±224.47b
C2 22.80±2.95a 13.11±2.42ab 49.94±15.37ab 40.07±1.01a 23.28±6.46ab 4392±800.61ab
C3 22.98±2.62a 12.63±2.04ab 43.89±7.38b 39.21±0.72a 20.58±3.65b 3848±329.62b
C4 22.64±2.66a 13.38±4.16ab 45.52±17.51b 39.29±0.29a 21.37±7.12b 3888±995.78b

Fig.2

Proportion of immature pods in kidney bean Different letters indicate significant differences at the 0.05 level, the same below."

Fig.3

Effects of population density and fulvic acid on sucrose content of kidney bean seeds"

Fig.4

Effects of population density and fulvic acid on the soluble sugar content of kidney bean seeds"

Fig.5

Effects of population density and fulvic acid on protein content of kidney bean seeds"

Fig.6

Effects of population density and fulvic acid on starch content of kidney bean seeds"

Fig.7

Effects of population density and fulvic acid on the flavonoid content of kidney bean seeds"

Fig.8

Effects of population density and fulvic acid on saponin content of kidney bean seeds"

Fig.9

Effects of population density and fulvic acid on the total phenolic content of kidney bean seeds"

Fig.10

Effect of population density and fulvic acid on phytic acid content of kidney bean seeds"

Table 4

Correlation coefficients between grain contents of kidney bean"

指标
Index
蔗糖
Sucrose
可溶性糖
Soluble sugar
淀粉
Starch
黄酮
Flavonoids
皂苷
Saponin
蛋白质
Protein
总酚
Total phenolic
植酸
Phytic acid
蔗糖Sucrose 1.000
可溶性糖Soluble sugar 0.371** 1.000
淀粉Starch 0.319** 0.826** 1.000
黄酮Flavonoids 0.203 0.484** 0.642** 1.000
皂苷Saponin 0.468** 0.664** 0.652** 0.562** 1.000
蛋白质Protein 0.331** 0.472** 0.365** 0.283 0.406* 1.000
总酚Total phenolic 0.241* 0.445** 0.391** 0.175 0.443** 0.484** 1.000
植酸Phytic acid 0.023 0.335** 0.508** 0.288** 0.304** 0.110 0.208* 1.000
[1] 曹亚楠, 向月, 杨斯惠, 等. 杂粮芽苗菜的营养与功能研究进展. 食品工业科技, 2022, 43(18):433-446.
[2] 于崧, 张翼飞, 金珊珊, 等. 播期和密度对芸豆生长、干物质积累及产量的影响. 中国农学通报, 2017, 33(6):84-90.
doi: 10.11924/j.issn.1000-6850.casb16100101
[3] 韩文革, 于晓春. 叶面肥对芸豆的增产效应分析. 北方园艺, 2002(3):46-47.
[4] 华劲松. 种植密度对间作芸豆群体冠层结构及产量的影响. 作物杂志, 2012(5):131-135.
[5] 李洁, 张小宁, 晋凡生, 等. 干旱年景下芸豆生长及产量对其密度的响应. 作物杂志, 2021(2):140-146.
[6] 张晓艳. 种植密度对芸豆产量和品质的影响研究. 晋中: 山西农业大学 2004.
[7] 翟云龙, 章建新, 倪丽, 等. 不同群体条件下奶花芸豆的生长及产量研究. 杂粮作物, 2005(2):94-95.
[8] 党根友, 冯佰利, 高冬丽, 等. 不同芸豆品种种子发育过程中贮藏蛋白积累研究. 西北植物学报, 2008(7):1366-1370.
[9] 华劲松. 玉米/芸豆间作模式下种植密度对芸豆产量及品质的影响. 江苏农业科学, 2012, 40(11):89-91.
[10] 刘佳欢, 王倩, 罗人杰, 等. 黄腐酸肥料对小麦根际土壤微生物多样性和酶活性的影响. 植物营养与肥料学报, 2019, 25(10):1808-1816.
[11] 袁瑞江, 姚银娟, 王丽乔, 等. 生物腐植酸(黄腐酸)及其在农业中的应用. 河北农业科学, 2009, 13(7):36-38,133.
[12] 赵永峰, 吴林科, 周皓蕾, 等. 黄腐酸在马铃薯上的应用效果初报. 甘肃农业科技, 2002(5):41-42.
[13] 张昭会, 李放, 朱琳, 等. 矿源黄腐酸钾施用方法对大豆产量的影响. 腐植酸, 2020, 194(3):53.
[14] 彭游. 芸豆功效成分的提取及活性研究进展. 天然产物研究与开发, 2012, 24(12):1866-1869.
[15] Yoshida S, Forno D A, Cock J H, et al. Determination of sugar and starch in plant tissue. Laboratory Manual for Physiological Studies of Rice, 1976, 8(2):92-97.
[16] 王丽丽, 林清霞, 宋振硕, 等. 分光光度法测定茶叶中总黄酮含量. 茶叶学报, 2021, 62(1):1-6.
[17] 李莉, 刘勇, 张美. 屏边三七总皂苷的含量测定研究. 中国民族民间医药, 2017, 26(24):18-22.
[18] 尚红梅, 陈诚, 刘祥, 等. Folin-Ciocaileu比色法测定菊苣中多酚的含量. 草业科学, 2013, 30(9):1445-1448.
[19] 傅启高, 李慧荃. 三氯化铁比色法测定植酸含量的研究. 营养学报, 1997, 19(2):78-82.
[20] 杨广东, 胡尊艳, 王强, 等. 高寒地区芸豆氮肥与密度优化组合模式研究. 干旱地区农业研究, 2016, 34(5):98-102,145.
[21] 赵雪英, 张春明, 闫虎斌, 等. 绿豆机械化栽培技术集成及适宜品种筛选. 山西农业科学, 2014, 42(10):1095-1097.
[22] 陈炜, 李红兵, 邓西平. 不同栽培模式下冬小麦灌浆过程中旗叶蔗糖代谢和籽粒淀粉积累特性. 西北农业学报, 2018, 27 (5):641-649.
[23] Nardi S, Muscolo A, Vaccaro S, et al. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biology and Biochemistry, 2007, 39(12):3138-3146.
[24] 王芳, 刘鹏, 朱靖文. 镁对大豆游离脯氨酸、可溶性糖和可溶性蛋白质含量的影响. 河南农业科学, 2004(6):35-38.
doi: 10.3969/j.issn.1004-3268.2004.06.010
[25] Gao F, Li Z L, Du Y P, et al. The combined application of urea and fulvic acid solution improved maize carbon and nitrogen metabolism. Agronomy, 2022, 12(6):1400.
[26] Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport. Planta, 2000, 211(6):800-806.
pmid: 11144264
[27] González-Moro B, Mena-Petite A, Lacuesta M, et al. Glutamine synthetase from mesophyll and bundle sheath maize cells: isoenzyme complements and different sensitivities to phosphinothricin. Plant Cell Reports, 2000, 19(11):1127-1134.
doi: 10.1007/s002990000233 pmid: 30754781
[28] 王修法, 付苗苗, 王晓曦. 小麦胚乳中蛋白质、淀粉组分分布及各性状关系的研究. 粮油加工, 2007(11):101-104.
[29] Rotundo J. Meta-analysis of environmental effects on soybean seed composition. Field Crops Research, 2009, 110(2):147-156.
[30] 张大勇, 谢甫绨, 李文滨, 等. 施肥、品种及密度对大豆籽粒异黄酮含量的影响. 大豆科学, 2009, 28(1):76-80.
[31] Król A, Amarowicz R, Weidner S. Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum, 2014, 36(6):1491-1499.
[32] Gharibi S, Tabatabaei B E, Saeidi G, et al. Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of achillea species. Applied Biochemistry and Biotechnology, 2016, 178(4):796-809.
doi: 10.1007/s12010-015-1909-3 pmid: 26541161
[33] 陈家炜, 梁华, 李文倩, 等. 不同肥料配比对黄芪有效成分合成关键酶基因表达的影响. 山西农业科学, 2019, 47(10):1751-1755.
[1] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[2] Wang Shanshan, Yang Yulei, Liu Feihu, Yang Yang, Tang Kailei, Li Tao, Niu Longjiang, Du Guanghui. Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp [J]. Crops, 2024, 40(5): 119-124.
[3] Huang Yulan, Liu Wenjun, Li Yanying, Zhou Jia, Zhou Lingzhi, Lao Chengying, Li Suping, Shen Zhangyou, Wei Benhui. Effects of Intercropping Cassava with Pumkin of Different Densities in Cassava Fields on Crop Yield, Economic Efficiency and Land Productivity [J]. Crops, 2024, 40(5): 125-130.
[4] Tian Qinqin, Zhuo Le, Chen Nana, Zheng Dechao, Wu Xiaojing, Yu Peng, Chen Pingping, Yi Zhenxie. Effects of Calcium-Magnesium Hydrotalcite on Cadmium Content in Brown Rice of Double-Cropping Rice and Soil Characteristics [J]. Crops, 2024, 40(5): 131-139.
[5] Mu Jianguo, Wang Peng, Liu Yantao, Cui Jiawei, Chen Yanfang, Wan Sumei, Chen Guihong. Effects of Different Harvesting Periods on the Commerciality and Yield of Edible Sunflower [J]. Crops, 2024, 40(5): 146-151.
[6] Li Hongliang, Sun Yuyou, Wei Caiqiang, Liu Dan, Xie Zhong, Cheng Dujuan, Qu Jinling, Song Ze, Meng Xianghai, Zhao Yuntong, Shi Xinrui. Effects of Controlled Irrigation and Fertilization on Growth, Yield and Quality of Japonica Rice in Cold Region [J]. Crops, 2024, 40(5): 152-158.
[7] Cao Shaona, Wu Lixiao, Guan Yaobing, Wang Kexiong. Effects of Different Types and Dosage of Bacterial Fertilizer on Yield and Quality of Broccoli [J]. Crops, 2024, 40(5): 159-166.
[8] Li Junzhi, Wang Xiaodong, Dou Shuang, Xin Zongxu, Wu Hongsheng, Zhou Yufei, Xiao Jibing. Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition [J]. Crops, 2024, 40(5): 175-180.
[9] Liu Zichen, Shang Liyan, Ye Jiayu, Sheng Tian, Li Ruijie, Deng Jun, Tian Xiaohai, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Input Cultivation on the Grain Quality of Hybrid Indica Rice [J]. Crops, 2024, 40(5): 194-203.
[10] Zhou Qi, Wu Fang, Wang Zhenlong, Xu Zhipeng, Deng Chaochao, Shi Zhiguo, Zhang Jing, Su Cuicui, Yu Yalin, Zhou Yanfang. Effects of Nitrogen Fertilizer and Biochar Application Rate Interaction on Growth and Root-Knot Nematode Disease of Greenhouse Tomatoes [J]. Crops, 2024, 40(5): 212-219.
[11] Zhou Xue, Han Fang, Su Leping, Li Xingxing, Niu Hongwei, Guo Wei, Yuan Hongʼan. Effects of Planting Density on Agronomic Traits and Yield of Spring Foxtail Millet [J]. Crops, 2024, 40(5): 241-246.
[12] Dong Mingyu, Zheng Hongfeng, Zhu Zhe. Effects of Different Endosperm Phenotypes on Agronomic Traits and Yield in Sorghum [J]. Crops, 2024, 40(5): 29-34.
[13] He Jiahui, Li Yanfeng, Yan Tianze, Zhang Xuanwen, Qin Peng, Guo Jinyou, Wang Kai, Liu Xionglun, Yang Yuanzhu. The Effects of Reducing Nitrogen Fertilizer Application on the Yield and Quality of Super Rice Weiliangyou 8612 [J]. Crops, 2024, 40(5): 73-79.
[14] Wang Yifan, Lin Tao, Wang Dong, Wang Xincui, Zhang Hao, Liu Haijun, Chen Maoguang, Tang Qiuxiang. Effects of Biodegradable Film and Irrigation Quota on Soil Hydrothermal Characteristics in Cotton Field [J]. Crops, 2024, 40(5): 86-95.
[15] Zhang Wei, Wang Qi, Yan Peng, Xu Yanli, Yan Hongdong, Li Guiying, Chen Disu, Jiao Xiaoyan, Lu Lin, Dong Zhiqiang. Effects of PASP-KT-NAA on Leaf Senescence and Yield of Sorghum Populations with Different Densities in Northeast China [J]. Crops, 2024, 40(5): 96-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!