Crops ›› 2023, Vol. 39 ›› Issue (5): 238-248.doi: 10.16035/j.issn.1001-7283.2023.05.034

Previous Articles     Next Articles

Effects of Combined Application of Biochar and Phosphate Fertilizer on Rice Growth and Yield

Liu Hui1(), Long Xueyi2, Jiao Yan2, Wang Lihong3()   

  1. 1College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    2College of Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
    3School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
  • Received:2022-04-22 Revised:2022-05-17 Online:2023-10-15 Published:2023-10-16

Abstract:

To investigate the effects of biochar combined with phosphorus fertilizer on the growth, development, and yield of rice, in order to provide a theoretical basis for ensuring food security and improving fertilizer utilization efficiency in black soil areas, using a pot experiment, three levels of biochar (0, 28, 55t/ha) and phosphorus fertilizer (20, 40, 60kg/ha) were set, a total of nine combinations, and the conventional treatment (CK) without biochar and phosphorus fertilizer as control, to study the response of rice growth, development, and yield to biochar and phosphorus fertilizer under controlled irrigation conditions. The results showed that the treatment (biochar was 55t/ha, phosphorus was 40kg/ha, B3P2) increased yield by 46.53% compared to CK treatment. Correlation analysis showed that there was no significant correlation between photosynthetic efficiency and yield, but there was a significant positive correlation between leaf area index during filling stage, aboveground dry matter accumulation during heading stage, effective panicles, and grains per panicle with yield, while there was a significant negative correlation between seed-setting rate and yield. The combination application of biochar and phosphorus fertilizer could improve the plant height during the heading and filling stages of rice, increase the leaf area index at each growth stage of rice, increase the accumulation of dry matter during the tillering and jointing stages, and enhance the photosynthesis of rice during the jointing stage. B3P2 treatment was the best treatment for all indicators. The combination of biochar and phosphorus fertilizer can effectively increase the length of rice panicles, increase the number of effective panicles, grains per panicle, and 1000-grain weight, thereby significantly improving rice yield. The optimal combination application mode of biochar and phosphorus fertilizer in the experimental area was 56t/ha of biochar and 43.75kg/ha of phosphorus fertilizer.

Key words: Biochar, Phosphate fertilizer, Rice, Agronomic traits, Photosynthesis, Yield

Table 1

Water management in different growth stages"

项目
Item
分蘖前期
Early tillering stage
分蘖中期
Middle tillering stage
分蘖末期
Late tillering stage
拔节期
Jointing stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Mature stage
灌溉上限Irrigation maximum 50mm 50mm 100% 35mm 40mm 100% 20mm
灌溉下限Irrigation minimum 90% 85% 60% 85% 10mm 70% 60%

Fig.1

Effects of combined application of biochar and phosphate fertilizer on rice plant height Different small letters indicate significant differences among different treatments at the same growth stage (P < 0.05), the same below"

Table 2

Two-factor analysis of variance for plant height of each treatment (F-value)"

因素
Factor
分蘖期
Tillering
stage
拔节期
Jointing
stage
抽穗期
Heading
stage
灌浆期
Filling
stage
成熟期
Maturity
stage
B 2.36 2.00 25.39** 23.57** 7.70**
P 8.35** 8.61** 4.86* 9.92** 0.56
B×P 0.31 3.50* 5.75** 5.83** 7.35**

Fig.2

Effects of combined application of biochar and phosphate fertilizer on leaf area index"

Table 3

Two-factor analysis of variance for leaf area index of each treatment (F-value)"

因素
Factor
分蘖期
Tillering
stage
拔节期
Jointing
stage
抽穗期
Heading
stage
灌浆期
Filling
stage
成熟期
Mature
stage
B 8.14** 6.22** 33.74** 42.72** 34.86**
P 4.65* 26.21** 80.11** 34.51** 4.18*
B×P 3.49* 9.37** 11.75** 3.49* 2.74

Fig.3

Effects of combined application of biochar and phosphate fertilizer on photosynthetic indexes at jointing stage of rice"

Table 4

Two-factor analysis of variance for photosynthetic indexes of each treatment at rice jointing stage (F-value)"

因素Factor Pn Gs Tr Ci
B 4.06* 5.26* 101.01** 14.81**
P 16.47** 4.51* 20.86** 11.71**
B×P 11.95** 8.14** 25.42** 10.81**

Table 5

"

处理
Treatment
分蘖期
Tillering stage
拔节期
Jointing stage
抽穗期
Heading stage
灌浆期
Filling stage
成熟期
Maturity stage
B1P1 3.00±0.80bcd 4.05±0.20d 7.65±1.42d 19.24±1.70e 30.69±1.67de
B1P2 3.20±0.40bc 4.23±0.46d 11.60±2.08ab 21.13±3.32de 32.13±1.53cde
B1P3 2.45±0.38cde 4.59±0.34c 10.35±1.15bc 25.01±2.15cd 31.32±2.71cde
B2P1 1.79±0.22e 4.40±0.71d 8.38±1.82cd 19.81±4.11e 30.97±3.61cde
B2P2 2.40±0.42e 5.02±0.28b 9.58±0.54bc 18.97±2.62ef 31.73±1.86cde
B2P3 3.96±0.70ab 6.39±0.46b 8.44±1.39cd 26.76±4.08bc 34.87±0.43bcd
B3P1 2.60±0.48de 4.16±0.63d 11.99±1.56ab 27.88±0.68bc 35.28±3.36bc
B3P2 4.65±0.23a 7.24±0.42a 14.00±0.78a 30.04±3.10b 38.45±2.35b
B3P3 2.95±0.42cde 5.17±0.27c 10.77±1.84bc 37.44±1.66a 43.36±2.10a
CK 1.85±0.17e 3.31±0.08e 6.58±0.87d 17.83±0.19f 28.07±0.99e
FF-value B 3.71* 23.33** 10.98** 40.06** 27.35**
P 8.54** 56.37** 8.62** 19.71** 7.14**
B×P 12.41** 27.81** 1.40 1.29 2.15

Table 6

Parameter estimation and model validity of Logistic growth equation of different treatments"

指标Index B1P1 B1P2 B1P3 B2P1 B2P2 B2P3 B3P1 B3P2 B3P3 CK
A1 3.15 3.18 3.07 2.28 2.58 4.64 3.04 4.79 3.11 2.44
A2 30.98 33.17 31.41 31.49 32.71 34.89 35.42 38.61 43.38 28.31
t0 91.26 89.50 86.92 90.30 89.48 89.09 86.72 87.05 87.07 90.81
p 15.71 10.74 18.04 13.45 11.10 23.31 16.85 16.24 26.19 15.94
R2 0.9974 0.9997 0.9942 0.9958 0.9961 0.9951 0.9956 0.9988 0.9933 0.9935

Table 7

Effects of combined application of biochar and phosphate fertilizer on rice yield and its components"

处理
Treatment
穗长
Panicle length (cm)
穗数
Panicle number
穗粒数
Grains per panicle
千粒重
1000-grain weight (g)
结实率
Seed-setting rate (%)
产量(g/盆)
Yield (g/pot)
B1P1 14.30±1.30bc 13.30±1.81a 51.00±7.21b 28.66±0.51a 96.41±1.38a 52.88±2.59de
B1P2 16.87±0.65ab 13.80±1.59a 52.00±3.46b 29.23±0.63a 96.89±0.69a 60.76±5.78bcd
B1P3 17.63±0.32a 13.05±1.33a 66.00±1.73a 28.77±0.03a 96.81±1.67a 68.42±1.86ab
B2P1 16.53±1.42ab 10.97±0.45bc 64.33±7.23a 28.92±0.41a 96.96±0.17a 56.63±1.82d
B2P2 15.47±1.04ab 12.67±0.63ab 50.67±3.51b 28.59±0.34a 96.89±1.16a 57.89±6.74cd
B2P3 17.07±0.97a 10.59±0.15c 65.67±7.23a 29.03±0.53a 96.63±1.29a 59.70±3.46bcd
B3P1 17.37±1.76a 11.87±0.81abc 64.67±9.50a 28.99±0.71a 95.70±0.89a 66.68±4.55abc
B3P2 16.43±0.96ab 13.65±1.45a 70.33±7.23a 27.60±0.09b 95.26±1.76a 72.64±6.23a
B3P3 16.23±0.60ab 11.75±0.66abc 65.67±3.06a 27.69±0.23b 92.74±1.72b 66.26±6.52abc
CK 12.73±2.86c 10.97±0.15bc 44.33±2.52b 28.83±0.07a 96.11±0.78a 49.58±6.39e
FF-value B 0.36 6.98** 6.87** 9.08** 8.68** 13.27**
P 1.76 5.13* 4.20* 2.07 1.64 4.54*
B×P 4.29* 0.42 3.86* 4.56* 1.56 3.30*

Fig.4

Correlation analysis of photosynthetic indexes, yield and its components of rice “*”indicates P < 0.05,“**”indicates P < 0.01, A, M, X1, X2, X3, X4 and Y indicate the leaf area index of rice at grain filling stage, aboveground dry matter mass, number of effective panicles, number of grains per panicle, 1000-grain weight, seed-setting rate and yield at heading stage, respectively"

[1] 郭韬, 余泓, 邱杰, 等. 国水稻遗传学研究进展与分子设计育种. 中国科学:生命科学, 2019, 49(10):1185-1212.
[2] 赵英鹏, 赵平, 李新. 球水稻田除草剂概况及新品种介绍. 农药, 2021, 60(9):631-633,646.
[3] 黄洋, 胡学玉, 曹坤坤, 等. 调理剂对磷镉富集土壤中两种元素交互作用的影响. 环境科学, 2021, 42(6):3028-3036.
[4] Sikma M, Ikawa H, Heusinkveld B G, et al. Quantifying the feedback between rice architecture, physiology, and microclimate under current and future CO2 conditions. Journal of Geophysical Research:Biogeosciences, 2020, 125(3):e2019JG005452.
[5] Parihar M, Meena V S, Mishra P K, et al. Arbuscular mycorrhiza: a viable strategy for soil nutrient loss reduction. Archives of Microbiology, 2019, 201(6):723-735.
doi: 10.1007/s00203-019-01653-9 pmid: 30941441
[6] Weber K, Quicker P. Properties of biochar. Fuel, 2018, 217:240-261.
doi: 10.1016/j.fuel.2017.12.054
[7] Jin Z, Chen C, Chen X M, et al. Soil acidity,available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five-year field trial in upland red soil, China. Field Crops Research, 2019, 232:77-87.
doi: 10.1016/j.fcr.2018.12.013
[8] Gerard C, Jubaeda H, Neneng L, et al. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Science of the Total Environment, 2018, 203:56-57.
[9] 张影, 刘星, 焦瑞锋, 等. 生物质炭与有机物料配施的土壤培肥效果及对玉米生长的影响. 中国生态农业学报, 2017, 25(9):1287-1297.
[10] Chen X J, Lin Q M, Muhammad R, et al. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment. Journal of Integrative Agriculture, 2019, 18(7):1486-1495.
doi: 10.1016/S2095-3119(19)62573-6
[11] 斯林林. 生物炭配施化肥对稻田养分利用及流失的影响. 杭州:浙江大学, 2018.
[12] 韩瑛祚, 娄春荣, 王秀娟, 等. 生物炭还田条件下磷肥减施对玉米产量及养分利用的影响. 玉米科学, 2018, 26(2):125-130.
[13] 陈智伟. 生物质炭和磷肥施用对土壤养分、小白菜生物量和植株养分含量的影响. 福州:福建师范大学, 2018.
[14] Abbhishek K, Chander G, Dixit S, et al. Legume biochar fertilizer can be an efficient alternative to compost in integrated nutrient management of paddy (Oryza sativa L.). Journal of Soil Science and Plant Nutrition, 2021, 21(4):2673-2688.
doi: 10.1007/s42729-021-00555-4
[15] Partey S T, Preziosi R F, Robson G D. Short-term interactive effects of biochar,green manure,and inorganic fertilizer on soil properties and agronomic characteristics of maize. Agricultural Research, 2014, 3:128-136.
doi: 10.1007/s40003-014-0102-1
[16] Mete F Z, Mia S, Dijkstra F A, et al. Synergistic effects of biochar and NPK fertilizer on soybean yield in an alkaline soil. Pedosphere, 2015, 25:713-719.
doi: 10.1016/S1002-0160(15)30052-7
[17] Hannan F, Islam F, Huang Q, et al. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. Chemosphere, 2021, 282:130897.
doi: 10.1016/j.chemosphere.2021.130897
[18] Parvage M, Ulen B, Eriksson J, et al. Phosphorus availability in soils amended with wheat residue char. Biology and Fertility of Soils, 2012, 49:245-250.
doi: 10.1007/s00374-012-0746-6
[19] Cai Z M, Zhai L M, Xi B, et al. Effect of biochar on Olsen-P and CaCl2-P in different types of soil. Chinese Journal of Soil Science, 2014, 45(1):163-168.
[20] 黄雁飞, 陈桂芬, 熊柳梅, 等. 不同秸秆生物炭对水稻生长及土壤养分的影响. 南方农业学报, 2020, 51(9):2113-2119.
[21] 朱勇勇, 宋秉羲, 杨王敏, 等. 旱作条件下氮肥减施对水稻生长、产量与经济收益的影响. 生态环境学报, 2021, 30(11):2150-2156.
doi: 10.16258/j.cnki.1674-5906.2021.11.005
[22] 朱士江, 叶晓思, 王斌, 等. 不同水分调控、生物炭配比对水稻产量与水分利用效率的影响. 节水灌溉, 2018(1):1-5.
[23] Akhtar T, Ziaur R M, Naeem A, et al. Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environmental Science and Pollution Research, 2017, 24 (6):5521-5529.
doi: 10.1007/s11356-016-8246-0
[24] 蔡威威, 艾天成, 李然, 等. 控释肥及尿素添加剂对双季稻光合特性及产量的影响. 中国土壤与肥料, 2018(3):54-60.
[25] 林诚, 李清华, 王飞, 等. 不同施磷水平对冷浸田水稻磷含量、光合特性及产量的影响. 热带亚热带植物学报, 2016, 24(05):553-558.
[26] Gleason S M, Nalezny L, Hunter C, et al. Growth and grain yield of eight maize hybrids are aligned with water transport, stomatal conductance, and photosynthesis in a semi-arid irrigated system. Physiologia Plantarum, 2021, 172(4):1941-1949.
doi: 10.1111/ppl.v172.4
[27] 刘展鹏, 褚琳琳. 作物干旱胁迫补偿效应研究进展. 排灌机械工程学报, 2016, 34(9):804-808.
[28] 张秀, 郭再华, 杜爽爽, 等. 砷胁迫下水磷耦合对不同磷效率水稻农艺性状及精米砷含量的影响. 作物学报, 2013, 39(10):1909-1915.
doi: 10.3724/SP.J.1006.2013.01909
[29] 张忠学, 姜丽莉, 陈鹏, 等. 水磷运筹对水稻产量和磷素吸收与利用的影响. 农业机械学报, 2019, 50(9):310-319.
[30] Sangeeta B, Yin X H, Hubert J, et al. Long-term influence of phosphorus fertilization on organic carbon and nitrogen in soil aggregates under no-till corn-wheat-soybean rotations. Agronomy Journal, 2020, 112(4):53-54.
[31] 荣飞龙, 蔡正午, 覃莎莎, 等. 酸性稻田添加生物炭对水稻生长发育及产量的影响——基于5年大田试验. 生态学报, 2020, 40(13):4413-4424.
[32] Gao J K, Shi Z Y, Wu H M, et al. Fluorescent characteristics of dissolved organic matter released from biochar and paddy soil incorporated with biochar. RSC Advances, 2020, 10(10):5785-5793.
doi: 10.1039/c9ra10279e pmid: 35497450
[33] Irene R M, Rosa C, Xavier D, et al. Comparing current chemical methods to assess biochar organic carbon in a Mediterranean agricultural soil amended with two different biochar. Science of the Total Environment, 2017, 598:604-618.
doi: 10.1016/j.scitotenv.2017.03.168
[34] 武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展. 地球科学进展, 2014, 29(1):68-79.
doi: 1001-8166(2014)01-0068-12
[35] 江学海, 李刚华, 王绍华, 等. 不同生育阶段干旱胁迫对杂交稻产量的影响. 南京农业大学学报, 2015, 38(2):173-181.
[36] 甄博, 郭相平, 陆红飞. 旱涝交替胁迫对水稻分蘖期根解剖结构的影响. 农业工程学报, 2015, 31(9):107-113.
[37] 肖新, 朱伟, 肖靓, 等. 适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮. 农业工程学报, 2013, 29(21):91-98.
[38] 徐蕊, 魏广彬, 李刚华, 等. 缓混肥不同磷配比及磷肥类型对水稻产量的影响. 江苏农业科学, 2022, 50(3):94-98.
[39] 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 2013, 39(8):1445-1451.
[40] Hidayat B, Rauf A, Sabring T, et al. Evaluation content of Pb in phase vegetative and generative of paddy by aplication azolla and husk biochar in contaminated paddy field. International Journal of Sciences:Basic and Applied Research (IJSBAR), 2017, 31 (3):156-164.
[41] 马顺圣, 毛伟, 李文西. 有机肥等氮量替代化肥对水稻产量、土壤理化性状及细菌群落的影响. 江苏农业科学, 2021, 49 (24):90-94.
[42] Zakaria M, Solaiman L K, Abbott D V. Biochar phosphorus concentration dictates mycorrhizal colonisation, plant growth and soil phosphorus cycling. Scientific Reports, 2019, 9(1):9-10.
doi: 10.1038/s41598-018-36956-2
[43] Zhu Q H, Peng X H, Huang T Q, et al. Effect of biochar addition on maize growth and nitrogen use efficiency in acidic red soils. Pedosphere, 2014, 24(6):699-708.
doi: 10.1016/S1002-0160(14)60057-6
[44] Wang Y Z, Zhang L W, Yang H, et al. Biochar nutrient availability rather than its water holding capacity governs the growth of both C3 and C4 plants. Journal of Soils and Sediments, 2016, 16(3):801-810.
doi: 10.1007/s11368-016-1357-x
[45] Heyneke E, Fernie A R. Metabolic regulation of photosynthesis. Biochemical Society Transactions, 2018, 46:321-328.
doi: 10.1042/BST20170296 pmid: 29523770
[46] 刘利成, 陈立云, 唐文帮, 等. 施氮量对双季稻产量及其群体光合特性的影响. 华北农学报, 2016, 31(1):203-211.
doi: 10.7668/hbnxb.2016.01.033
[47] 徐令旗, 郭晓红, 兰宇辰, 等. 不同有机肥对旱直播水稻干物质积累和产量的影响. 华北农学报, 2021, 36(2):188-195.
doi: 10.7668/hbnxb.20191573
[48] 陈海飞, 冯洋, 蔡红梅, 等. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20 (6):1319-1328.
[1] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[2] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[3] Fang Wenying, Zhu Defeng, Huai Yan, Chen Jiaqi, Chen Huizhe, Wang Yaliang. Analysis on the Effects of Precision Drill Sowing in Machine Transplanting for Single-Season Hybrid Rice to Improve Yield of Sparsely Planted Population [J]. Crops, 2023, 39(5): 124-130.
[4] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[5] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[6] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[7] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[8] Hu Rui, Hu Xiangyu, Fu Youqiang, Ye Qunhuan, Pan Junfeng, Liang Kaiming, Li Meijuan, Liu Yanzhuo, Zhong Xuhua. Effects of Nitrogen Fertilizer Management on Rice Root Growth and Development and Its Relationships with Nitrogen Fertilizer Uptake and Utilization [J]. Crops, 2023, 39(5): 179-186.
[9] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[10] Tian Xiaoqin, Wang Dan, Li Zhuo, Liu Yonghong, Li Wei. Effects of Ridge and Mulching on Yield and Water Use Efficiency of Rapeseed [J]. Crops, 2023, 39(5): 204-211.
[11] Yi Bing, Liu Jingang, Song Dianxiu, Wang Dexing, Zhao Mingzhu, Liu Xiaohong, Sun Enyu, Cui Liangji. Study on Land Productivity and Interspecific Competition of Sunflower and Millet Intercropping in Arid Areas [J]. Crops, 2023, 39(5): 219-223.
[12] Zhao Weizhe, Du Chunfang, Sun Xuan, Yao Lin, Xian Shuanshi, Zhang Gaoyang. Effects of Stalk Picking on Economic Characteristics and Yield of Oilseed and Vegetable Rape [J]. Crops, 2023, 39(5): 224-230.
[13] Cao Qingjun, Li Gang, Yang Hao, Lou Yuyong, Yang Fentuan, Kong Fanli, Li Xinbei, Zhao Xinkai, Jiang Xiaoli. The Effects of Different Tillage Practices on Seedbed Quality and Its Relationships with Seedling Population Construction and Grain Yield of Spring Maize [J]. Crops, 2023, 39(5): 249-254.
[14] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[15] Zhang Shangpei, Yang Junxue, Luo Shiwu, Wang Yong, Zhang Xiaojuan, Cheng Bingwen. Genetic Diversity and Yielding Ability Analysis of Agronomic Traits in Broom Corn Millet [J]. Crops, 2023, 39(5): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!