Crops ›› 2018, Vol. 34 ›› Issue (4): 48-52.doi: 10.16035/j.issn.1001-7283.2018.04.009

Previous Articles     Next Articles

Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress

Liang Xiaoyu,Lin Chunyu,Ma Shumei,Wang Yang   

  1. Department of Agricultural Resource and Environment, Heilongjiang University, Harbin 150080, Helongjiang, China
  • Received:2018-03-19 Revised:2018-07-10 Online:2018-08-15 Published:2018-08-23

Abstract:

The genotyping data of 260 SSR markers on representative 281 varieties were used in this study and the index of germination under salt and alkaline stress were surveyed. The association analysis between SSR loci and the index of germination under salt and alkaline stress was performed using GLM software in the version of Tassel 2.0. Elite alleles and their carriedmaterials were determined on the average phenotypic value of all accessions.Out of 15 SSR loci associated with the index of germination under salt stress, RM184 and RM171 had the highest contribution rate 29.51% and 31.67%, respectively. The RM184-211 in variety of 'Diantun 502 xuanzao' had the highest positive phenotypic effect (0.31). Out of 20 SSR loci associated with the index of germination under alkaline stress, RM168 and RM6314 had the highest contribution rate 39.17% and 50.02%, respectively. The RM6314-179 in variety of 'Yue 6(N202)' had the highest positive phenotypic effect (0.58).

Key words: Rice (Oryza sativa L.), Salt stress, Alkaline stress, Germination ability, Elite allele

Table 1

Mean lnP(D) values and ΔK values for different K parameter"

K 2 3 4 5 6 7 8
lnP(D) -81360.3 -69464.2 -60659.4 -53147.1 -49199.0 -42724.4 -38217.2
ΔK 54.10 29.08 47.73 32.46 92.17 22.64 22.04

Table 2

SSR markers significantly associated with salt tolerance index of rice and its contribution rate to phenotypic variation"

标记
Marker
染色体
Chromosome
遗传距离
Genetic distance
贡献率(%)
Contribution rate
标记
Marker
染色体
Chromosome
遗传距离
Genetic distance
贡献率(%)
Contribution rate
RM1358 2 48 6.49 RM72 8 61 17.82
RM3467 3 28 17.92 RM3600 9 63 18.87
RM338 3 62 7.96 RM410 9 79 9.92
RM7403 3 82 15.86 RM184 10 42 29.51
RM5951 4 56 13.56 RM258 10 49 16.39
RM142 4 60 26.71 RM5352 10 71 3.66
RM3170 6 29 15.84 RM171 10 73 31.67
RM3138 6 111 18.05

Table 3

SSR markers significantly associated with alkaline tolerance index of rice and its contribution rate to phenotypic variation"

标记
Marker
染色体
Chromosome
遗传距离
Genetic distance
贡献率(%)
Contribution rate
标记
Marker
染色体
Chromosome
遗传距离
Genetic distance
贡献率(%)
Contribution rate
RM8059 1 61 19.24 RM7579 6 85 9.67
RM9 1 92 13.37 RM5380 7 67 16.28
RM486 1 154 9.87 RM25 8 52 16.38
RM7 3 37 14.56 RM524 9 43 34.94
RM232 3 77 13.43 RM3533 9 65 13.39
RM168 3 123 39.17 RM184 10 42 22.61
RM16 3 132 7.24 RM1125 10 47 23.04
RM6314 4 42 50.02 RM6100 10 54 4.47
RM471 4 54 18.61 RM6327 11 2 44.90
RM161 5 97 25.43 RM6544 11 20 2.70

Table 4

The salt tolerance alleles identified by SSRs associated analysis and their carried variety"

位点-等位变异
Locus-allele
表型效应值
Phenotypic effect value
载体品种
Carried variety
位点-等位变异
Locus-allele
表型效应值
Phenotypic effect value
载体品种
Carried variety
RM1358-152 0.16 越76(7133) RM184-211 0.31 滇屯502选早
RM3467-89 0.28 聚子光 RM258-149 0.28 越7(TBR1)
RM3467-121 0.28 补血糯 RM5951-57 0.24 垦稻12
RM3467-127 0.28 香珠糯 RM142-206 0.26 南农粳3786
RM338-177 0.17 越18(AYTO1-D12) RM142-238 0.26 龙沟种
RM7403-248 0.06 帽子头 RM3170-180 0.29 滇屯502选早
RM3138-95 0.27 越33(8603) RM3600-96 0.27 三百粒头
RM72-157 0.27 越6(N202) RM5352-130 0.08 南农粳62401
RM410-177 0.10 千斤稻 RM171-280 0.17 帽子头

Table 5

The alkaline tolerance alleles identified by SSRs associated analysis and their carried variety"

位点-等位变异
Locus-allele
表型效应值
Phenotypic effect value
载体品种
Carried variety
位点-等位变异
Locus-allele
表型效应值
Phenotypic effect value
载体品种
Carried variety
RM8095-109 0.51 越21(94-3-1) RM6544-145 0.29 越21(94-3-1)
RM9-218 0.51 越49(AC5) RM168-83 0.51 越37(2)
RM486-114 0.49 越23(LCV10) RM16-178 0.51 越108(73)
RM7-180 0.36 南农粳62401 RM6314-179 0.58 越6(N202)
RM233-145 0.52 越21(94-3-1) RM25-160 0.52 越61(D19)
RM471-116 0.46 越57(254) RM5380-129 0.56 越50(KHAO 85)
RM161-320 0.50 昆农8号 RM524-204 0.48 越87(69)
RM7579-72 0.40 越57(254) RM3533-223 0.51 越48(D6)
RM184-211 0.39 南农粳62401 RM6100-120 0.40 越54(B0T1)
RM1125-99 0.53 越38(70) RM6327-172 0.44 越21(94-3-1)
[1] Wang Z, Wang J, Bao Y , et al. Quantitative trait loci controlling rice seed germination under salt stress. Euphytica, 2011,178(3):297-307.
doi: 10.1007/s10681-010-0287-8
[2] Kim D M, Ju H G, Kwon T R , et al. Mapping QTLs for salt tolerance in an introgression line population between Japonica cultivars in rice. Journal of Crop Science and Biotechnology, 2009,12(3):121-128.
doi: 10.1007/s12892-009-0108-6
[3] Chai L, Zhang J, Pan X B , et al. Advanced backcross QTL analysis for the whole plant growth duration salt tolerance in rice (Oryza sativa L.). Journal of Integrative Agriculture, 2014,13(8):1609-1620.
doi: 10.1016/S2095-3119(13)60575-4
[4] 顾兴友, 梅曼彤, 严小龙 , 等. 水稻耐盐性数量性状位点的初步检测. 中国水稻科学, 2000,14(2):2-7.
[5] Sabouri H, Rezai A M, Moumeni A , et al. QTLs mapping of physiological traits related to salt tolerance in young rice seedlings. Biologia Plantarum, 2009,53(4):657-662.
doi: 10.1007/s10535-009-0119-7
[6] Thomson M J, Ocampo M, Egdane J , et al. Characterizing the saltol quantitative trait locus for salinity tolerance in rice. Rice, 2010,3(2/3):148-160.
doi: 10.1007/s12284-010-9053-8
[7] 邢军, 常汇琳, 王敬国 , 等. 盐、碱胁迫条件下粳稻Na+、K+浓度的QTL分析 . 中国农业科学, 2015,48(3):604-612.
[8] 龚继明, 何平, 钱前 , 等. 水稻耐盐性QTL的定位. 科学通报, 1998,43(17):1847-1850.
[9] 钱益亮, 王辉, 陈满元 , 等. 利用BC2F3产量选择导入系定位水稻耐盐QTL. 分子植物育种, 2009,7(2):224-232.
[10] 杨小红, 严建兵, 郑艳萍 , 等. 植物数量性状关联分析研究进展. 作物学报, 2007,33(4):523-530.
doi: 10.3321/j.issn:0496-3490.2007.04.001
[11] Ju W, Phillip E M, Rian L , et al. Association mapping of iron deciency chlorosisloci in soybean (Glycine max L. Merr.) advanced breeding lines. Theoretical & Applied Genetics, 2008,116:777-787.
[12] Sherry A F, Anne C T, Jiang Y , et al. Maize association population:a high-resolution platform for quantitative trait locus dissection. Plant Journal, 2005,44:1054-1064.
doi: 10.1111/tpj.2005.44.issue-6
[13] March R E . Gene mapping by linkage and association analysis. Molecular Biotechnology, 1999,13:113-122.
doi: 10.1385/MB:13:2:113 pmid: 10934526
[14] Zhang N, Xu Y, Akash M , et al. Identification of candidate markers associated with agronomic traits in rice using discriminant analysis. Theoretical & Applied Genetics, 2005,110:721-729.
[15] 王洋, 郭媛, 洪德林 . 太湖流域粳稻两类群体种子活力性状有利等位变异的发掘. 作物学报, 2010,36(5):754-763.
[16] 张军, 赵团结, 盖钧镒 . 中国大豆育成品种群体遗传结构分化和亚群特异性分析. 中国农业科学, 2009,42(6):1901-1910.
doi: 10.3864/j.issn.0578-1752.2009.06.004
[17] 王洋, 郭媛, 洪德林 . 水稻幼苗耐缺氧能力的QTL分析. 中国水稻科学, 2010,24(1):18-24.
doi: 10.3969/j.issn.1001-7216.2010.01.04
[18] Temnykh S, Park W D, McCouch S R . Mapping and genome organization of microsatellite sequence in rice (Oryza sativa L.). Theoretical & Applied Genetics, 2000,100:697-712.
doi: 10.1007/s001220051342
[19] McCouch S R, Teytelman L, Xu Y . Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research, 2002,9:199-207.
doi: 10.1093/dnares/9.6.199
[20] 陈兰, 张红, 张启武 , 等. 水稻6个异交相关性状的SSR关联分析. 南京农业大学学报, 2012,35(2):1-9.
[1] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[2] Kailun Zhang,Shouming Chen,Hong Yin,Bin Li,Liangwen Xie,Fan He. and Antioxidant Activity of Tobacco Seedlings under Salt Stress [J]. Crops, 2018, 34(3): 123-128.
[3] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress [J]. Crops, 2018, 34(1): 166-172.
[4] Nannan Lu,Lihua Yan,Chongke Zheng,Haibo Yin,Shanli Guo,Xianzhi Xie. Effects of Salt Stress on Growth and Agronomic Traits of Yanfeng 47 and Yanjing 456 [J]. Crops, 2017, 33(5): 106-111.
[5] Junying Wu,Li Qin,Jin Yang,Dezhi Qin. Study of Salt Stress on Sugar Beet Seedling Growth and Nutrient Transport of Nongda Tianyan No. 6 [J]. Crops, 2017, 33(3): 75-80.
[6] Ziwei Zhang,Chunhua Pang,Yongqing Zhang,Ruijun Ni,Shifang Yang,Luyuan Wang,Liqin Liu. Effects of Iso-osmotic NaCl and PEG Stress and Rewatering on Seed Germination and Seedling Growth of Quinoa [J]. Crops, 2017, 33(1): 119-126.
[7] Zhurong Zheng,Ruixiang Zhang,Tingting Yang,Lichao Wen,Xuefeng Shen. Effects of Salt Stress on Physiological and Biochemical Characteristics of Roots in Peanut [J]. Crops, 2016, 32(4): 142-145.
[8] Limin Sang,Caifeng Li,Yubo Wang,Lei Liu,Guanghao Guo,Jian Guo,Ming Chen. Effects of Na2SO4+NaCl Mixed Salt Stress on the Growth of Sugar Beet Seedlings [J]. Crops, 2016, 32(4): 137-141.
[9] . [J]. Crops, 2013, 29(3): 53-55.
[10] . [J]. Crops, 2013, 29(3): 131-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .