Crops ›› 2018, Vol. 34 ›› Issue (3): 68-76.doi: 10.16035/j.issn.1001-7283.2018.03.011

Previous Articles     Next Articles

Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption

Zhang Li1,Li Zantang1,Wang Shiyin1,Ma Yanchao2,Dongfang Yang2,Li Xueyong1,Xu Jiang1   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2 Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei, China
  • Received:2017-11-13 Revised:2018-03-09 Online:2018-06-20 Published:2018-06-20

Abstract:

To reveal the mutation type and genetic characteristics of rice mutant osnad1 (Oryza sativa nitrogen absorption deficit 1) generated by ethylmethane sulfonate (EMS) mutagenesis, we compared the phenotypes, nitrogen metabolism and photosynthesis between the mutant osnad1 and wild type (WT, Nipponbare), and conducted the genetic analysis of osnad1 in this study. The results showed that: (1) Compared with WT, the phenotype of osnad1 plant showed a decrease of plant height and root length, leaves chlorosis, and restrained growth. (2) The accumulation of total nitrogen in roots and shoots of osnad1 was significantly less than that in WT. Through determining the flow rate of nitrogen source ions (NH4 + and NO3ˉ) on root surface of osnad1 and WT by SIET technique, we found that the capacity of nitrogen absorption and the glutamine synthetase (GS) activity in osnad1 root were lower than that in WT. (3) Compared with WT, both the contents of chlorophyll and photosynthetic parameters were decreased in leaves of osnad1, causing accumulation of dry matter blocked. (4) The result of genetic analysis showed that the ratio of normal plant number to mutant plant number was 3:1. In conclusion, osnad1 was a rice mutant defective in nitrogen absorption, which was controlled by a single recessive gene. This study would provide a base for further cloning and function analysis of the osnad1 gene.

Key words: Rice, Mutant, Nitrogen absorption, Physiological analysis, Genetic analysis

Table 1

The components of nutrition and their content in the normal nutrition solution"

元素种类
Element type
目标元素浓度
Element concentration
使用盐类
Salt type
盐浓度
Salt concentration
大量元素 N 2.5mM NH4NO3 1.25mM
Macroelements P 0.3mM KH2PO4 0.3mM
K 0.3+0.7mM K2SO4 0.35mM
Ca 1.0mM CaCl2 1.0mM
Mg 1.0mM MgSO4·7H2O 1.0mM
微量元素 Mn 9μM MnCl2·4H2O 9μM
Microelements Cu 0.32μM CuSO4·5H2O 0.32μM
Fe 20μM NaFeEDTA 20μM
B 20μM H3BO3 20μM
Zn 0.77μM ZnSO4·7H2O 0.77μM
Mo 0.38μM Na2MoO4·2H2O 0.38μM
Si 20μM Na2SiO3·9H2O 20μM

Fig.1

Phenotype of mutant osnad1 and its wild type Nipponbare"

Fig.2

The accumulation and concentration of total nitrogen and nitrogen physiological use efficiency in different part of osnad1 and wild type"

Fig.3

The uptake dynamic of nitrogen source ions on the root surface of osnad1 and WT in seedling stage"

Fig.4

The NR and GS activity in roots and shoots of osnad1 and WT in tillering stage"

Fig.5

The content of photosynthetic pigments and photosynthetic parameters in the flag leaf of osnad1 and WT in flowering stage"

Table 2

The genetic analysis of mutant osnad1"

组合
Cross
F1表型
F1 phenotype
F2群体F2 population 卡平方
χ2(3:1)
野生型
Wild type
突变体表型
Mutant type
总计
Total
Dular/osnad1 野生型Wild type 308 90 398 1.209
[1] 陆景陵 . 植物营养学(第2版). 北京: 中国农业大学出版社, 2003: 23.
[2] Chen G, Guo S W, Kronzucker H J , et al. Nitrogen use efficiency in rice links to NH4 + toxicity and futile NH4 + cycling in roots . Plant Soil, 2013,369:351-363.
[3] 殷春渊, 魏海燕, 张庆 , 等. 不同氮肥水平下中熟籼稻和粳稻产量、氮素吸收利用差异及相互关系. 作物学报, 2009,35(2):348-355.
doi: 10.3724/SP.J.1006.2009.00348
[4] 陈晓飞, 宁书菊, 魏道智 , 等. 氮素营养水平对水稻幼苗氮代谢的影响. 中国生态农业学报, 2008,16(3):571-575.
[5] 王月福, 于振文, 李尚霞 , 等. 氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响. 作物学报, 2002,28(6):743-748.
[6] 段英华, 张亚丽, 沈其荣 . 增硝营养对不同基因型水稻苗期吸铵和生长的影响. 土壤学报, 2005,42(2):260-265.
[7] 徐春梅, 王丹英, 陈松 , 等. 增氧对水稻根系生长与氮代谢的影响. 中国水稻科学, 2012,26(3):320-324.
doi: 10.3969/j.issn.10017216.2012.03.010
[8] 赵锋, 张卫健, 章秀福 , 等. 连续增氧对不同基因型水稻分蘖期生长和氮代谢酶活性的影响. 作物学报, 2012,38(2):344-351.
doi: 10.3724/SP.J.1006.2012.00344
[9] Fan J B, Zhang Y L, Turner D , et al. Root physiological and morphological characteristics of two rice cultivars with different nitrogen-use efficiency. Pedosphere, 2010,20:446-455.
[10] 程建峰, 戴廷波, 荆奇 , 等. 不同水稻基因型的根系形态生理特性与高效氮素吸收. 土壤学报, 2007,44(2):266-272.
doi: 10.3321/j.issn:0564-3929.2007.02.011
[11] 曾建敏, 崔克辉, 黄见良 , 等. 水稻生理生化特性对氮肥的反应及与氮利用效率的关系. 作物学报, 2007,33(7):1168-1176.
doi: 10.3321/j.issn:0496-3490.2007.07.019
[12] 郁晓敏, 方萍, 向成斌 . 拟南芥低氮耐性突变体的初步筛选. 植物营养与肥料学报, 2004,10(4):441-443.
doi: 10.11674/zwyf.2004.0419
[13] 刘菲, 林熊, 尹辉 , 等. 拟南芥氮代谢相关基因T-DNA插入突变体低氮响应的初步研究. 生物技术通报, 2009(6):91-95.
[14] 刘辉, 赵竹青, 叶志娟 , 等. 水稻T-DNA插入氮营养缺陷型突变体的氮营养特征. 华中农业大学学报, 2009,28(4):438-441.
doi: 10.3321/j.issn:1000-2421.2009.04.013
[15] Liu G W, Sun A L, Li D Q , et al. Molecular identification and functional analysis of a maize (Zea mays) DUR3 homolog that transports urea with high affinity. Planta, 2015,241:861-874.
[16] Luo J, Li H, Liu T , et al. Nitrogen metabolism of two contrasting poplar species during acclimation to limiting nitrogen availability. Journal of Experimental Botany, 2013,64(14):4207-4224.
[17] Li B Z, Mike M, Li S M , et al. Molecular basis and regulation of ammonium transporter in rice. Rice Science, 2009,16:314-322.
doi: 10.1016/S1672-6308(08)60096-7
[18] 王超, 项超, 曲丽君 , 等. 水稻氮吸收转运利用生理机制及耐低氮遗传基础研究进展. 中国农学通报, 2014,30(3):1-9.
[19] 吴巍, 赵军 . 植物对氮素吸收利用的研究进展. 中国农学通报, 2010,26(13):75-78.
[20] Xu Y, Sun T, Yin L P . Application of non-invasive micro-sensing system to simultaneously measure both H + and O2 fluxes around the pollen tube . Journal of Integrative Plant Biology, 2006,48(7):823-831.
[21] Aslam M, Hukffaker R C, Rains D W . Early effects of salinity on nitrate assimilation in barley seedlings. Plant Physiology, 1984,76:321-325.
doi: 10.1104/pp.76.2.321 pmid: 16663840
[22] Wang L, Zhou Q, Ding L , et al. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, 2008,154:818-825.
[23] 王绍华, 曹卫星, 王强盛 , 等. 水稻叶色分布特点与氮素营养诊断. 中国农业科学, 2002,35(12):1461-1466.
doi: 10.3321/j.issn:0578-1752.2002.12.005
[24] 顾清, 邓劲松, 陆超 , 等. 基于光谱和形状特征的水稻扫描叶片氮素营养诊断. 农业机械学报, 2012,43(8):170-174.
doi: 10.6041/j.issn.1000-1298.2012.08.031
[25] Koutroubasa S D, Ntanosb D A . Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice under Mediterranean conditions. Field Crops Research, 2003,83:251-260.
[26] 戢林, 李延轩, 张锡洲 , 等. 氮高效利用基因型水稻根系形态和活力特征. 中国农业科学, 2012,45(23):4770-4781.
doi: 10.3864/j.issn.0578-1752.2012.23.003
[27] 殷春渊, 张庆, 魏海燕 , 等. 不同产量类型水稻基因型氮素吸收利用效率的差异. 中国农业科学, 2010,43(1):39-50.
[28] 程建峰, 戴廷波, 曹卫星 , 等. 不同氮收获指数水稻基因型的氮代谢特征. 作物学报, 2007,33(3):497-502.
doi: 10.3321/j.issn:0496-3490.2007.03.022
[29] 罗凤, 卢永恩, 杨猛 , 等. 氮胁迫对水稻营养生长期氮代谢及相关基因表达量的影响. 华中农业大学学报, 2012,31(1):16-22.
[1] Ji Shengdong, Li Peng, Li Jiangwei, Song Liumin, . Analysis of Peroxidase Zymogram and Genetic#br# Effects between Rice Lines and Their#br# Parents During Grain Filling [J]. Crops, 2018, 34(5): 17-20.
[2] Ma Mengli, Zheng Yun, Zhou Xiaomei, . Genetic Diversity Analysis of Red Rice from#br# Hani’s Terraced Fields in Yunnan Province [J]. Crops, 2018, 34(5): 21-26.
[3] Chen Yingying, Wangxu Yiling, Zhu Yuhan, . Hyperspectral Estimation of Nitrogen#br# Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[4] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[5] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[6] Bo Zeng. Renovation of Main Cultivated Rice Varieties in China in the Past 30 Years [J]. Crops, 2018, 34(3): 1-7.
[7] Chen He,Guiping Zheng,Haicheng Zhao,Liqiang Chen,Hongyu Li,Yandong Lü,Jiang Song. Effects of Increasing Humic Acid but Reducing Fertilization on Panicle Traits and Yield of Rice in Saline-Alkali Soil [J]. Crops, 2018, 34(3): 129-134.
[8] Yong Cui. The Research Progress of Water-Dry Rotation Methods in Paddy Field [J]. Crops, 2018, 34(3): 8-14.
[9] Zhiqiang Tang,Liqiang Dong,Rui Li,Liying Zhang,Na He,Yuedong Li. Effects of Nitrogen and Soil Type on Seedling Quality and Nutrient Absorption in Rice [J]. Crops, 2018, 34(3): 141-147.
[10] Mingjun Zhang,Zhongfeng Li,Lili Yu,Jun Wang,Lijuan Qiu. Identification and Screening of Protein Subunit Variation Germplasm from Both Mutants and Natural Population in Soybean [J]. Crops, 2018, 34(3): 44-50.
[11] Lili Zhang,Yizhou Zhao,Xin Li,Ting Mao,Yan Liu,Zhan Zhang,Shanjun Ni,Fucai Liu. Mutant Analysis on Quality Trait of Different Japonica Rice Progenies Induced by 60Co-γ Ray Irradiation [J]. Crops, 2018, 34(3): 51-56.
[12] Bo Zeng,Shixian Sun,Jie Wang. Registration of Main Rice Varieties and Its Application in Recent 30 Years in China [J]. Crops, 2018, 34(2): 1-5.
[13] Zhibo Zhou,Yake Yi,Guanghui Chen. Effects of Sowing Amount, Medium and Chemical Treatment on Seedling Quality and Yield of High Quality Late-Rice Variety of Yuzhenxiang [J]. Crops, 2018, 34(2): 129-135.
[14] Ge Qu,Zhengguang Chen,Xue Wang. Identification of Rice Varieties Using NIR Spectroscopy and SIMCA, PLS-DA Methods [J]. Crops, 2018, 34(2): 166-170.
[15] Jianjun Wang,Yongjun Zeng,Yanhong Yi,Qiming Zhang,Qixing Hu,Xueming Tan,Shan Huang,Qingyin Shang,Yanhua Zeng,Qinghua Shi. The Uniformity of Mechanical-Transplanted Early-Season Rice under Different Seeding Rates and Its Effects on the Formation of Grain Yield [J]. Crops, 2018, 34(2): 141-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .