Crops ›› 2018, Vol. 34 ›› Issue (6): 116-123.doi: 10.16035/j.issn.1001-7283.2018.06.018

Previous Articles     Next Articles

Effects of Exogenous Hydrogen Peroxide on Floral Bud Differentiation in Tobacco

Wang Ning,Zhang Jing,Huang Jinyong,Shi Tuansheng,Du Jian,Yue Caipeng   

  1. School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2018-09-30 Online:2018-12-15 Published:2018-12-06

Abstract:

The active oxygen metabolism and flower bud differentiation in tobacco were studied by spraying exogenous H2O2 via pot experiments. Results showed that: (1) The active oxygen metabolism was significantly changed in tobacco by spraying H2O2. After spraying H2O2, the content of H2O2 and O2 _ was rapidly increased in tobacco, the activities of POD and CAT were rapidly activated followed by the activation of SOD. In the middle and latter period of spraying, the content of O2 _ was high, while the content of H2O2 was significantly decreased. (2) The expressions of the floral development genes were affected, the number of leaves in squaring stage was altered and the process of flower bud development was modified by spraying of H2O2. The expression of FLC gene was significantly inhibited while the expression of LFY gene was significantly promoted in tobaccos which were sprayed H2O2 at 5 and 15 consecutive days. Floral bud differentiation of tobaccos progressed earlier under 5 to 25 consecutive days spray of H2O2. The flowering transition was affected by the change of active oxygen equilibrium in tobacco.

Key words: Tobacco, Exogenous hydrogen peroxide, Reactive oxygen species, Floral bud differentiation

Fig.1

Rapidly responsive changes of O2- content in tobacco treated with exogenous H2O2 *, Significant difference at 0.05 level; **, Extremely significant difference at 0.01 level; the same below"

Fig.2

Changes of O2- content in tobacco treated with exogenous H2O2 for a long time"

Fig.3

Rapidly responsive changes of H2O2 content in tobacco treated with exogenous H2O2"

Fig.4

Changes of H2O2 content in tobacco treated with exogenous H2O2 for a long time"

Fig.5

Rapid response changes of POD activity in tobacco treated with exogenous H2O2"

Fig.6

Changes of POD activity in tobacco treated with exogenous H2O2 for a long time"

Fig.7

Rapidly responsive changes of CAT activity in tobacco treated with exogenous H2O2"

Fig.8

Changes of CAT activity in tobacco treated with exogenous H2O2 for a long time"

Fig.9

Rapidly responsive changes of SOD activity in tobacco treated with exogenous H2O2"

Fig.10

Changes of SOD activity in tobacco treated with exogenous H2O2 for a long time"

Fig.11

Effect of exogenous H2O2 on the expression of FLC"

Fig.12

Effect of exogenous H2O2 on the expression of LFY"

Fig.13

The flower bud differentiation of tobacco under exogenous H2O2 conditions (10×5)"

Fig.14

The leaf number of tobacco when buds occur under exogenous H2O2"

[1] Dickinson B C, Chang C J . Chemistry and biology of reactive oxygen species in signaling or stress responses. Nature Chemical Biology, 2011,7(8):504-511.
doi: 10.1038/nchembio.607 pmid: 21769097
[2] Lehmann S, Serrano M, Haridon F L , et al. Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry, 2015,112:54-62.
doi: 10.1016/j.phytochem.2014.08.027 pmid: 25264341
[3] Mittler R . Oxidative stress,antioxidants and stress tolerance. Trends in Plant Science, 2002,7:405-410.
doi: 10.1016/S1360-1385(02)02312-9 pmid: 12234732
[4] 施征, 史胜青, 姚洪军 , 等. 植物线粒体中活性氧的产生及其抗氧化系统. 北京林业大学学报, 2009,31(1):150-154.
[5] 陈花, 吴俊林, 李晓军 . 叶绿体中活性氧的产生和清除机制. 现代生物医学进展, 2008,8(10):1979-1981.
[6] 郭玉双, 李祥羽, 任学良 . 植物体内活性氧(ROS)的产生及其作用研究进展. 黑龙江农业科学, 2011(8):146-148.
doi: 10.3969/j.issn.1002-2767.2011.08.053
[7] Baxter A, Mittler R, Suzuki N . ROS as key players in plant stress signaling. Journal of Experimental Botany, 2014,65(5):1229-1240.
doi: 10.1093/jxb/ert375 pmid: 24253197
[8] 孙兰芳, 张营, 宫永超 . ROS在ABA信号转导中的作用研究进展. 现代农业科技, 2008(19):131-132.
doi: 10.3969/j.issn.1007-5739.2008.19.085
[9] 戴甲培, 石悦 . 活性氧双向生物学效应和机制. 中南民族大学学报, 2012,31(3):43-51.
[10] Agurla S, Gayatri G, Raghavendra A S . Nitric oxide as a secondary messenger during stomatal closure as a part of plant immunity response against pathogens. Nitric Oxide, 2014,43:89-96.
doi: 10.1016/j.niox.2014.07.004
[11] Asai S, Yoshioka H . Nitric oxide as a partner of reactive oxygen species participates in disease resistance to necrotrophic pathogen Botrytis cinerea in Nicotiana benthamiana. Plant Microbe Interactions, 2009,22:619-629.
doi: 10.1094/MPMI-22-6-0619
[12] Vainonen J P, Kangasjärvi J . Plant signalling in acute ozone exposure. Plant Cell and Environment, 2015,38(2):240-252.
doi: 10.1111/pce.12273
[13] 崔为体, 刘锐涛, 林玉婷 . 一氧化碳:植物气体信号分子的新成员. 南京农业大学学报, 2012,35(5):87-92.
[14] Suzuki N, Koussevitzky S, Mittler R , et al. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell and Environment, 2012,35(2):259-270.
doi: 10.1111/j.1365-3040.2011.02336.x pmid: 21486305
[15] Laloi C, Apel K, Danon A . Reactive oxygen signalling:the latest news. Current Opinion in Plant Biology, 2004,7(3):323-328.
doi: 10.1016/j.pbi.2004.03.005 pmid: 15134754
[16] Apel K, Hirt H . Reactive oxygen species:metabolism,oxidative stress,and signal transduction. Plant Biology, 2004,55:373-399.
doi: 10.1146/annurev.arplant.55.031903.141701 pmid: 15377225
[17] Mittler R, Vanderauwera S, Suzuki N , et al. ROS signaling:the new wave. Trends in Plant Science, 2011,16(6):300-309.
doi: 10.1016/j.tplants.2011.03.007 pmid: 21482172
[18] McAinsh M R, Clayton H, Mansfield T A . Changes in stomatal behaviour and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiology and Biochemistry, 1996,111(4):1031-1042.
doi: 10.1104/pp.111.4.1031
[19] Almagro L, Gómez Ros L V, Belchi-Navarro S , et al. Class III peroxidases in plant defence reactions. Journal of Experimental Botany, 2009,60(2):377-390.
doi: 10.1093/jxb/ern277 pmid: 19073963
[20] 任永哲, 徐艳花, 李振声 , 等. 拟南芥根系发育的分子机制研究进展. 西北植物学报, 2011,31(7):1497-1504.
[21] Foreman J, Demidchik V, Bothwell J H , et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 2003,422(6930):442-446.
doi: 10.1038/nature01485
[22] Monshausen G B, Bibikova T N, Messerli M A , et al. Oscillations in extracellular pH and reactive oxygen species modulate tip growth of Arabidopsis root hairs. Proceedings of the National Academy of Sciences, 2007,104(52):20996-21001.
doi: 10.1073/pnas.0708586104
[23] 李名迪, 魏冬, 颜满莲 , 等. 水稻叶片的活性氧代谢及衰老调控. 江西农业学报, 2005,17(4):112-116.
[24] Kwak J M, Mori I C, Pei Z M , et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal, 2003,22(11):2623-2633.
doi: 10.1093/emboj/cdg277 pmid: 12773379
[25] Fath A, Bethke P, Beligni V , et al. Active oxygen and cell death in cereal aleurone cells. Journal of Experimental Botany, 2002,53(372):1273-1282.
doi: 10.1093/jexbot/53.372.1273
[26] Bethke P C, Jones R L . Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. The Plant Journal, 2001,25(1):19-29.
doi: 10.1111/j.1365-313X.2001.00930.x pmid: 11169179
[27] Michaels S D, Himelblau E, Sang Y K , et al. Integration of flowering signals in winter annual Arabidopsis. Plant Physiology, 2005,137(1):149-156.
doi: 10.1104/pp.104.052811
[28] Wigge P A . Integration of spatial and temporal information during floral induction in Arabidopsis. Science, 2005,309(5737):1056-1059.
doi: 10.1126/science.1114358
[29] 张亚萍, 习珺珺, 于丽霞 . LEAFY(LFY)基因在花发育网络调控中的研究进展. 现代农业科技, 2012(9):11-13,16.
doi: 10.3969/j.issn.1007-5739.2012.09.001
[30] Parcy F . Flowering:a time for integration. The International Journal of Developmental Biology. 2005,49(5-6):585-593.
[31] 陈惠萍, 陈晓敏, 蔡世英 . 活性氧对香蕉果实后熟的效应. 热带农业科学, 1999(6):23-26.
[32] 邸葆, 张建光, 孙建设 , 等. 外源活性氧处理对苹果果皮组织抗氧化特性的影响. 河北农业大学学报, 2004,27(5):34-36.
doi: 10.3969/j.issn.1000-1573.2004.05.008
[33] 张蜀秋, 李云, 武维华 . 植物生理学实验技术教程. 北京: 北京科学出版社, 2011.
[34] 李合生 . 植物生理生化实验原理和技术. 北京: 北京高等教育出版社, 2000.
[35] 王爱国, 罗广华 . 植物的超氧物自由基与羟胺反应的定量关系. 植物生理学报, 1990(6):55-57.
[36] 张静, 李园园, 岳彩鹏 , 等. 低温胁迫下活性氧代谢与烟草花芽分化的研究. 作物杂志, 2015(4):74-80.
doi: 10.16035/j.issn.1001-7283.2015.04.017
[37] 段玉琪, 晋艳, 杨宇虹 . 体式显微镜法观察烤烟花芽分化的研究. 中国农学通讯, 2011,27(3):143-146.
[38] 李元元 . 低温诱导烟草早花研究与烟草MADS-box基因的同源克隆. 北京:中国农业科学院, 2011.
[39] Diego S F, Mayara R B, Daniel G C , et al. Usual normalization strategies for gene expression studies impair the detection and analysis of circadian patterns. Chronobiology International, 2018,35(3):378-391.
doi: 10.1080/07420528.2017.1410168 pmid: 29219623
[40] 刘秀丽, 招启柏, 袁莉民 , 等. 烟草花芽分化的形态建成观察. 中国烟草科学, 2003(1):9-11.
[41] 杨盛, 郝国伟, 白牡丹 , 等. ‘玉露香梨’僵芽发生与活性氧代谢的关系. 农学学报, 2016,6(2):76-81.
[42] 卢金 . 外源H2O2处理对小麦种子萌发及幼苗生理生化特性的影响. 兰州:西北师范大学, 2012.
[43] 李琳, 薛林贵, 张红光 , 等. 外源过氧化氢对UV-B胁迫下蓝藻生理的影响. 生态科学, 2014(4):691-697.
[44] Singh R, Parihar P . Reactive oxygen species (ROS):Beneficial companions of plants' developmental processes. Frontiers in Plant Science, 2016,7:1299.
doi: 10.3389/fpls.2016.01299 pmid: 5037240
[45] Cembrowska L D, Koprowski M, Kepczynski J . Germination induction of dormant Avena fatua caryopses by KAR1 and GA3 involving the control of reactive oxygen species (H2O2 and O2 -) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers . Journal of Plant Physiology, 2015,176:169-179.
doi: 10.1016/j.jplph.2014.11.010 pmid: 25618514
[46] 赵士诚, 孙静文, 马有志 , 等. 镉对玉米幼苗活性氧代谢、超氧化物歧化酶和过氧化氢酶活性及其基因表达的影响. 中国农业科学, 2008,41(10):3025-3032.
[47] 王鹏程 . 拟南芥活性氧应答基因的转录调控分子机制研究. 开封:河南大学, 2010.
doi: 10.7666/d.y1694071
[48] Lu X, Li J, Chen H , et al. RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis. Scientific Reports, 2017,7(1):10183.
doi: 10.1038/s41598-017-10742-y pmid: 28860553
[49] 李念祖 . 芥菜开花整合子FLC与SVP相互作用的研究. 重庆:西南大学, 2013.
[1] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures [J]. Crops, 2018, 34(4): 161-166.
[2] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings [J]. Crops, 2018, 34(4): 131-137.
[3] Kailun Zhang,Shouming Chen,Hong Yin,Bin Li,Liangwen Xie,Fan He. and Antioxidant Activity of Tobacco Seedlings under Salt Stress [J]. Crops, 2018, 34(3): 123-128.
[4] Yaning Wang,Jinpeng Yang,Chunlei Yang,Fangsen Xu,Xiang Zhang,Liang Li. Effects of Well-Cellar Transplanting with Triangulation on Growth, Development,Yield and Quality of Burley Tobacco [J]. Crops, 2018, 34(3): 116-122.
[5] Jie Xu,Lei Pan,Shuai Yang,Yunsong Chen,Shengbin Deng,Xiaodong Yang,Wenguang Ma. Analysis of Genetic Effects of Potassium Content in Flue-Cured Tobacco [J]. Crops, 2018, 34(2): 30-34.
[6] Siyu Gong,Sirong Zhong,Shichuan Zhang,Yaping Nie,Xihuan Liang,Shuaiqiang Yang,Qiyuan Liu. Effects of Biochar on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2018, 34(2): 154-160.
[7] Bingfei Zhao,Shuang Sun,Zhenwu Hou,Yunpeng Fu,Quanshan Fu,Yongfeng Yang,Jing Wang,Yongcheng Huang. Effects of Different Ratio of N to K on Carbon-Nitrogen Metabolism and Chemical Constituents of Dark Sun-Cured Tobacco [J]. Crops, 2018, 34(2): 73-79.
[8] Linjian Dai,Wu Chen,Tian Zhou,Jun Zhong. Selection Mutant of Resistant to Black Shank on Tobacco by Anther Culture [J]. Crops, 2018, 34(1): 66-70.
[9] Hongqu Liao,Hongli Chen,Wensi Fan,Yu Chen,Qiujing Han,Jianjun Yu,Ming Ma. Fractal Characteristics of Soil Particles and Their Effects on Physicochemical Properties of Tobacco Leaves in Main Tobacco Growing Areas in Henan [J]. Crops, 2018, 34(1): 118-125.
[10] Liangmu Li,Yikuan Fan,Zicheng Xu. Research Progress of the Effects of Molybdenum Nutrition on Tobacco Quality [J]. Crops, 2017, 33(6): 12-16.
[11] Han Yan,Hanglin Song,Li Zhang,Jing Yan,Xianji Shi,Shimiao Zhu,Lu Liu,Hulin Li. Effects of Cadmium Stress on Agronomic Traits and Physiological and Biochemical Indexes of Flue-Cured Tobacco [J]. Crops, 2017, 33(5): 156-161.
[12] Liuya Huang,Yongbo Sun,Shuwu Liu,Yonghui Zhang,Fuzhao Nian,Yong Gu. Research Advance of the Effects of Biochar onthe Main Properties of Soil and Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2017, 33(4): 15-20.
[13] Pingping Chen,Jing Yang,Juan Li,Naimei Tu,Zhenxie Yi. Study on Interaction Effects of Fertilizer and Density on Late Rice after Tobacco in Tobacco-Rice Rotation System in Changsha Tobacco Area [J]. Crops, 2016, 32(6): 79-84.
[14] Qiang Hu,Baofeng Jin,Pufan Zheng,Fucai Chen,Sitong Li,Kailun Mao,Hailun Liu,Yonghong Tang,Lixin Zhang. Effects of Exogenous GA3 and IAA on Quality of Upper Leaves of Flue-Cured Tobacco in Southern Shaanxi Province [J]. Crops, 2016, 32(6): 135-141.
[15] Qingli Liu,Zhihong Li,Yanli Xu,Junying Li,Yungui Zhang. Research on the Cooperative Technology of Flue-Cured Tobacco based on Transplanting-Date, Fertilization and Variety in Yunnan [J]. Crops, 2016, 32(6): 128-134.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[2] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .