Crops ›› 2018, Vol. 34 ›› Issue (2): 154-160.doi: 10.16035/j.issn.1001-7283.2018.02.027

Previous Articles     Next Articles

Effects of Biochar on Growth, Yield and Quality of Flue-Cured Tobacco

Gong Siyu1,Zhong Sirong1,Zhang Shichuan1,Nie Yaping2,Liang Xihuan1,Yang Shuaiqiang1,Liu Qiyuan1   

  1. 1 College of Agronomy, Jiangxi Agricultural University/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding of Jiangxi Province, Nanchang 330045, Jiangxi, China
    2 Zhejiang University of Finance and Economics, Hangzhou 310018, Zhejiang, China
  • Received:2017-11-27 Revised:2018-03-03 Online:2018-04-20 Published:2018-08-27

Abstract:

Field experiments were conducted to study the effects of adding biochar to inorganic fertilizer and bio-organic fertilizer on growth, yield and quality of flue-cured tobacco. 4 different fertilization treatments were set up in the experiment: inorganic fertilizer (T1), bio-organic fertilizer (T2), inorganic fertilizer+biochar (T3), bio-organic fertilizer+biochar (T4). The results showed that: (1) The fresh weight of T4 was significantly lower than that of T2 by 13.74%. From rosette stage to vigorous growing stage, compared with T1, the fresh weight of T3 decreased by 6.55% and the dry weight decreased by 11.87%, at significant level. From vigorous growing stage to topping stage, the fresh weight of T4 was 13.12% more than T2 and the T3 was 18.33% more than T1, the differences were both significant. The application of biochar could inhibit the early growth of tobacco and promote their later growth. (2) Adding biochar could effectively increase the upper and middle leaves area. In the middle and upper leaves, the area of T3 increased by 19.73% and 0.90% when compared with T1, T4 increased by 9.39% and 2.50% when compared with T2, respectively. (3) The application of biochar could increase the content of plastid pigment in tobacco leaves before baking (during growth), reduce the content of chlorophyll and increased carotenoid content in cured tobacco leaves. (4) Adding biochar could significantly increase the total sugar content of upper and middle leaves, reduce the nicotine content, and make the chemical composition more harmonious. In the upper and middle tobacco leaves, the total sugar content of T3 increased by 2.85% and 11.85% when compared with T1, T4 increased by 1.88% and 3.49% when compared with T2, respectively. Meanwhile, the nicotine content of T3 reduced by 10.19% and 29.61% when compared with T1, T4 reduced by 16.61% and 5.21% when compared with T2, respectively. (5) Compared with inorganic fertilizer, the application of inorganic fertilizer combined with biochar could increase yield, output value, fine tobacco ratio, medium and fine tobacco ratio and the average price by 5.06%, 8.79%, 8.98%, 0.08% and 3.58% respectively. Compared with bio-organic fertilizer, the application of bio-organic fertilizer combined with biochar could increase by 2.07%, 12.28%, 10.88%, 2.07%, 10.00% respectively. The increase in the fine tobacco by adding biochar was the largest. (6) Biochar combined with bio-organic fertilizer had the best effects on the yield and quality of flue-cured tobacco.

Key words: Biochar, Flue-cured tobacco, Yield, Quality

Table 1

Effects of different treatments on fresh and dry weight of tobacco at different stages g"

处理
Treatment
移栽期至团棵期
Transplanting period to rosette stage
团棵期至旺长期
Rosette stage to vigorous growing stage
旺长期至打顶期
Vigorous growing stage to topping stage
鲜重Fresh weight 干重Dry weight 鲜重Fresh weight 干重Dry weight 鲜重Fresh weight 干重Dry weight
T1 217.75b 23.78a 1 027.75a 112.73a 564.50d 119.00a
T2 261.78a 26.33a 915.20c 93.83b 712.50b 142.50a
T3 228.10b 25.05a 960.40b 99.35b 668.00c 137.50a
T4 225.80b 24.68a 909.23c 93.19b 806.00a 148.00a

Table 2

Effects of different treatments on agronomic traits of tobacco"

处理
Treatment
下部叶面积(cm2)
Lower leaf area
中部叶面积(cm2)
Middle leaf area
上部叶面积(cm2)
Upper leaf area
单株有效叶片数
Effective leaves per plant
株高(cm)
Plant height
T1 1 493.41a 1 119.01d 1 182.71a 20.50b 103.87a
T2 1 453.04a 1 490.31b 1 215.92a 22.50ab 104.71a
T3 1 462.41a 1 339.80c 1 193.39a 21.50ab 103.09a
T4 1 390.08b 1 630.23a 1 246.37a 23.00a 103.50a

Table 3

Effects of different treatments on chromoplast pigment content of tobacco in different growth stages mg/g"

处理Treatment T1 T2 T3 T4
叶绿素a含量Chlorophyll-a content 团棵期Rosette stage 1 157.49a 1 003.68b 1 106.36a 985.31b
旺长期Vigorous growing stage 1 169.06b 1 309.11a 1 217.06b 1 328.96a
打顶期Topping stage 2 049.23c 2 173.94b 2 061.35c 2 288.04a
叶绿素b含量Chlorophyll-b content 团棵期Rosette stage 174.30a 97.55c 128.44b 90.04c
旺长期Vigorous growing stage 243.97b 305.32a 270.69b 325.94a
打顶期Topping stage 38.13b 57.08a 54.41a 58.61a
叶黄素含量Lutein content 团棵期Rosette stage 209.67a 163.12b 203.21a 157.99b
旺长期Vigorous growing stage 234.72b 241.73b 238.61b 262.50a
打顶期Topping stage 175.63c 238.43b 227.50b 260.11a
β-胡萝卜素含量β-carotene content 团棵期Rosette stage 170.16a 136.47b 173.20a 128.52b
旺长期Vigorous growing stage 192.07b 202.74b 200.09b 226.26a
打顶期Topping stage 146.86c 184.16b 180.23b 208.22a

Table 4

Effects of different treatments on chromoplast pigment content in flue-cured tobacco leaves μg/g"

处理
Treatment
叶绿素含量
Chlorophyll content
类胡萝卜素含量
Carotenoid content
上部叶
Upper leaf
中部叶
Middle leaf
上部叶
Upper leaf
中部叶
Middle leaf
T1 6.37a 9.84a 211.57c 191.10c
T2 5.80a 8.56b 224.64b 201.18b
T3 6.63a 8.67b 211.67c 193.15c
T4 4.12b 7.05c 237.89a 213.30a

Table 5

Effects of different treatments on the content and the ratio of the chemical components of flue-cured tobacco"

部位
Part
处理
Treatment
烟碱(%)
Nicotine
总糖(%)
Total sugar
还原糖(%)
Reducing sugar
总氮(%)
Total N
氯(%)
Cl
钾(%)
K
还原糖/烟碱
Reducing sugar/Nicotine
总氮/烟碱
Total N/Nicotine
钾/氯
K/Cl
上部叶 T1 3.14a 20.03d 18.34b 1.96a 0.24a 1.91b 5.84 0.62 7.96
Upper leaf T2 2.89b 22.32b 20.56a 2.17a 0.20b 2.09a 7.11 0.75 10.45
T3 2.82b 20.60c 17.04c 2.02a 0.23a 1.99b 6.04 0.72 8.65
T4 2.41c 22.74a 21.18a 1.94a 0.20b 2.06a 8.79 0.80 10.30
中部叶 T1 3.04a 22.03d 23.51b 1.63a 0.18b 2.22c 7.73 0.54 12.33
Middle leaf T2 2.11b 26.10b 24.24a 1.67a 0.20b 2.51ab 11.49 0.79 12.55
T3 2.14b 24.64c 23.86b 1.58b 0.24a 2.34b 11.15 0.74 9.75
T4 2.00c 27.01a 24.40a 1.64a 0.25a 2.78a 12.20 0.82 11.12

Table 6

Effects of different treatments on appearance quality of flue-cured tobacco"

处理
Treatment
成熟度
Ripeness
颜色
Color
色度
Chroma
身份
Body
油分
Oil
结构
Structure
T1 成熟 桔黄 稍薄 稍有 尚疏松
T2 成熟 桔黄 稍薄 疏松
T3 成熟 桔黄 中等 尚疏松
T4 成熟 桔黄 中等 疏松

Table 7

Effects of different treatments on economic characteristics of flue-cured tobacco"

处理
Treatment
产量
Yield (kg/hm2)
产值(元/hm2)
Output value (yuan/hm2)
上等烟比例(%)
Fine tobacco ratio
中上等烟比例(%)
Mediu and fine tobacco ratio
均价(元/kg)
Average price (yuan/kg)
T1 2 793.15c 39 028.50d 23.27a 83.58b 13.97b
T2 3 121.80a 45 896.55b 27.21a 89.35a 14.70b
T3 2 934.60b 42 458.10c 25.36a 83.65b 14.47b
T4 3 186.45a 51 532.35a 30.17a 91.20a 16.17a
[1] 陈温福, 张伟明, 孟军 , 等. 生物炭应用技术研究. 中国工程科学, 2011,13(2):83-87.
doi: 10.3969/j.issn.1009-1742.2011.02.015
[2] 何绪生, 耿增超, 余雕 , 等. 生物炭生产与农用的意义及国内外动态. 农业工程学报, 2011,27(2):1-7.
doi: 10.3969/j.issn.1002-6819.2011.02.001
[3] 郭伟, 陈红霞, 张庆忠 , 等. 华北高产农田施用生物炭对耕层土壤总氮和碱解氮含量的影响. 生态环境学报, 2011,20(3):425-428.
doi: 10.3969/j.issn.1674-5906.2011.03.006
[4] Gaskin J W, Steiner C, Harris K , et al. Effects of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABL, 2008,51(6):2061-2069.
doi: 10.13031/2013.25409
[5] Yuan J H, Xu R K, Zhang H , et al. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 2010,102(3):3488-3497.
doi: 10.1016/j.biortech.2010.11.018 pmid: 21112777
[6] Liang B , O'Neill B,Lehmann J,et al. Black carbon increases canon exchange capacity in soils. Soil Science Society of America Journal, 2006,70:1719-1730.
[7] Lehmann J, Gaunt J, Rondon M . Biochar sequestration in terrestrial ecosystems:A review. Mitig Adapt Strat Global Change, 2006,11:403-427.
doi: 10.1007/s11027-005-9006-5
[8] Chan K Y, Van Z L, Meszaros I , et al. Agronomic values of green waste biochar as a soil amendment. Australian Journal of Soil Research, 2007,45(8):629-634.
[9] 张爱平, 刘汝亮, 高霁 , 等. 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响. 植物营养与肥料学报, 2015,21(5):1352-1360.
doi: 10.11674/zwyf.2015.0531
[10] 陈盈, 张满利, 刘宪平 , 等. 生物炭对水稻齐穗期叶绿素荧光参数及产量构成的影响. 作物杂志, 2016(3):94-98.
doi: 10.16035/j.issn.1001-7283.2016.03.018
[11] 代舟, 孟军, 田晓翠 , 等. 生物炭对东北酸性土养分含量、酶活性及大豆产量的影响. 黑龙江八一农垦大学学报, 2016,28(4):1-5.
doi: 10.3969/j.issn.1002-2090.2016.04.001
[12] 刘明, 来永才, 李炜 , 等. 生物炭与氮肥施用量对大豆生长发育及产量的影响. 大豆科学, 2015,34(1):87-92.
[13] 刘明, 来永才, 李炜 , 等. 生物炭对玉米物质生产及产量的影响. 作物杂志, 2015(3):133-138.
[14] 牛志强, 杨永霞, 刘国顺 , 等. 湖北省不同生态区烤烟质体色素代谢差异研究. 中国农学通报, 2014,30(28):87-92.
[15] 王广山, 朱尊权, 尹启生 , 等. 氮肥用量对白肋烟产质的影响. 烟草科技, 2000(12):34-37.
[16] 中华人民共和国国家标准. GB2326-92烤烟. 北京:国家技术监督局, 1992: 2-10.
[17] 赵献章, . 烟叶分级.北京:中国农业出版社, 2003.
[18] YC/T 160-2002烟草及烟草制品总植物碱的测定连续流动法.
[19] YC/T 159-2002烟草及烟草制品水溶性糖的测定连续流动法.
[20] YC/T 161-2002烟草及烟草制品总氮的测定连续流动法.
[21] YC/T 162-2002烟草及烟草制品氯的测定连续流动法.
[22] YC/T 217-2007烟草及烟草制品钾的测定连续流动法.
[23] 王瑞新, .烟草化学. 北京:中国农业出版社, 2003.
[24] 冉法芬, 许自成, 李东亮 , 等. 我国主产烟区烤烟钾、氯、钾氯比与评吸质量的关系分析. 西南农业学报, 2010,23(4):1147-1150.
doi: 10.3969/j.issn.1001-4829.2010.04.033
[25] 赵殿峰, 徐静, 罗璇 , 等. 生物炭对土壤养分、烤烟生长以及烟叶化学成分的影响. 西北农业学报, 2014,22(3):85-92.
[26] 张晗芝, 黄云, 刘钢 . 生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响. 西生态环境学报,20l0, 19(11):2713-2727.
doi: 10.3969/j.issn.1674-5906.2010.11.034
[27] 孔跃 . 生物有机肥对番茄及小白菜生长与品质影响效应的研究. 武汉:华中农业大学, 2007.
doi: 10.7666/d.y1197999
[28] Steiner C, Glaser B, Geraldes T W , et al. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. Journal of Plant Nutrition and Soil Science, 2008,171:893-899.
[29] 黄刘亚, 孙永波, 刘书武 , 等. 生物炭对植烟土壤主要性状和烤烟产质量影响的研究进展. 西作物杂志, 2017(4):15-20.
doi: 10.16035/j.issn.1001-7283.2017.04.003
[30] Noguera D, Rondón M, Laossi K R , et al. Contrasted effect of biochar and earthworms on rice growth and resource allocation in different soils. Soil Biology and Biochemistry, 2010,42:1017-1027.
[31] 王镇 . 生物有机肥对植烟土壤质量和烟叶品质影响的研究. 郑州:河南农业大学, 2010.
doi: 10.7666/d.y1729013
[32] 张园营 . 烟草专用炭基一体肥生物炭适宜用量研究. 郑州:河南农业大学, 2013.
doi: 10.7666/d.Y2432271
[33] 万海涛 . 烤烟发育和产量品质及植烟土壤理化性状对生物炭的响应研究. 郑州:河南农业大学, 2014.
[34] 吕一甲 . 生物炭肥对土壤性质、玉米生长及水肥利用效率影响试验研究. 呼和浩特:内蒙古农业大学, 2014.
[35] 邹健, 彭云, 王娜 , 等. 生物炭用量对烤烟生长及产量、质量的影响. 云南农业大学学报(自然科学版), 2017,32(4):652-658.
[36] 景延秋, 宫长荣, 张月华 , 等. 烟草香味物质分析研究进展. 中国烟草科学, 2005(2):44-48.
doi: 10.3969/j.issn.1007-5119.2005.02.014
[37] 杨永霞, 张嘉炜, 王晶 , 等. 生物炭对烤烟质体色素代谢的影响. 烟草科技, 2015,48(10):26-30.
[38] 刘新源 . 生物炭与无机有机肥料混合施用对土壤理化特性和烟叶产量品质的影响. 郑州:河南农业大学, 2014.
[39] 金闻博, 戴亚, 横田拓 , 等 . 烟草化学 . 北京:清华大学出版社, 2000.
[40] 陈雪, 喻奇伟, 符云鹏 . 不同土壤改良措施对烤烟产质量的影响. 江西农业学报, 2015,27(2):67-70.
[1] Zhao Xin, Chen Shaofeng, Wang Hui, . Research on the Yield and Quality of Different Tartaty#br# Buckwheat Varieties in Northern Shanxi Area [J]. Crops, 2018, 34(5): 27-32.
[2] Wu Ronghua, Zhuang Kezhang, Liu Peng, Zhang Chunyan. Response of Summer Maize Yield to#br# Meteorological Factors in Lunan Region [J]. Crops, 2018, 34(5): 104-109.
[3] Su Feifei, Zhang Jinghua, Li Yong, Liu Shangwu, Liu Zhenyu, Wang Shaopeng, Wan Shuming, Chen Xi, Gao Yunfei, Hu Linshuang, Lü Dianqiu. Effects of Different Irrigation Methods on#br# Physiological Characteristics and Water#br# Use Efficiency of Potato [J]. Crops, 2018, 34(5): 97-103.
[4] Zhang Ruidong, Cao Xiong, Yue Zhongxiao, . Effects of Nitrogen and Density Interaction on Grain#br# Yield and Nitrogen Use Efficiency of Sorghum [J]. Crops, 2018, 34(5): 110-115.
[5] An Xia, Zhang Haijun, Jiang Fangshan, Lü Lianjie, Chen Jun. Effects of Different Sowing Dates and Sowing#br# Densities on the Population Structure and#br# Yield of Two Spike Type Winter Wheats [J]. Crops, 2018, 34(5): 132-136.
[6] Li Shaokun, Zhang Wanxu, Wang Keru, Han Dongsheng, . Study on Maize Mechanical Grain#br# Harvest in Northern Xinjiang [J]. Crops, 2018, 34(5): 127-131.
[7] Gao Wenjun, Yang Guoyi, Gao Xinzhong, Yu Zhu, . The Effects of Nitrogen, Phosphorus, or Potassium#br# Fertilizer on the Yield and Silage Quality of Maize [J]. Crops, 2018, 34(5): 144-149.
[8] Wang Xiaolin, Ji Xiaoling, Zhang Panpan, Zhang Xiong, Zhang Jing. Correlation Analysis between Aboveground Biomass#br# Allocation and Grain Yield in Different Varieties of#br# Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[9] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation [J]. Crops, 2018, 34(4): 121-125.
[10] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area [J]. Crops, 2018, 34(4): 126-130.
[11] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum [J]. Crops, 2018, 34(4): 138-142.
[12] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province [J]. Crops, 2018, 34(4): 143-148.
[13] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years [J]. Crops, 2018, 34(4): 32-36.
[14] Menghan Wei, Huifang Xie, Lu Xing, Hui Song, Shujun Wang, Suying Wang, Haiping Liu, Nan Fu, Jinrong Liu. Comprehensive Evaluation of Yield and Agronomic Characters of Foxtail Millet Germplasms from North China [J]. Crops, 2018, 34(4): 42-47.
[15] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .