Crops ›› 2016, Vol. 32 ›› Issue (5): 67-74.doi: 10.16035/j.issn.1001-7283.2016.05.012

Previous Articles     Next Articles

Water-Saving Irrigation Techniques of Three Major Food Crops and Their Effects on Grain Yield and Water Use Efficiency

Zhang Hao,Yang Jianchang   

  1. College of Agronomy/Co-Innovation Center for Modern Production Technology of Grain Crops,Yangzhou University,Yangzhou 225009,Jiangsu,China
  • Received:2016-05-18 Revised:2016-07-18 Online:2016-10-15 Published:2018-08-26
  • Contact: Jianchang Yang

Abstract:

Three major food crops, rice, wheat and maize, were grown in field. Two treatments, conventional irrigation (control) and water-saving irrigation techniques, i.e., alternate wetting and moderate soil drying throughout the growing season in rice, controlled soil drying irrigation in wheat, and root partial and alternate irrigation in maize, were conducted. The effects of water-saving irrigation techniques on grain yield and water use efficiency (WUE) of the three crops was investigated. The results showed that, compared with the control, the water-saving irrigation techniques increased grain yield by 8.56%~9.23% and water use efficiency by 25.00%~31.43%. The water-saving irrigation techniques significantly decreased transpiration rate and the angle of the top leaves, significantly increased the ratio of abscisic acid (ABA) to gibberellic acids (GA3) in inferior spikelets (ABA/GA3), activities of sucrose phosphate synthase (SPS) in culms and sucrose synthase (SuS) in grains, average grain-filling rate, remobilization rate of non-structural carbohydrate (NSC) in culms and harvest index of the three crops. The water-saving irrigation techniques could also significantly increase the percentage of productive tillers in rice and wheat. The results suggest that decreased luxurious transpiration and redundant growth of non-productive tillers, improved canopy structure, enhanced remobilization and sink activity, and increased harvest index would contribute to the increase in grain yield and WUE under the water-saving irrigation techniques.

Key words: Food crops, Water-saving irrigation, Grain yield, Water use efficiency

Table 1

Controlled soil drying irrigation in wheat"

土壤类型
Soil type
越冬前Pre-winter 拔节期Jointing stage 孕穗期Booting stage 开花期Flowering stage
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
粘土Clay -25 40 -35 40 -30 40 -35 40
壤土Loam -25 45 -35 45 -30 45 -35 45
砂土Sand -25 50 -35 50 -30 50 -35 50

Table 2

Root partial and alternate irrigation of controlled minimum soil moisture in maize"

土壤类型
Soil type
出苗期(播种-3叶期)
Sprouting stage
(Sowing-3 leaf stage)
苗期(3叶期-拔节)
Seeding stage
(3 leaf stage-Jointing)
穗期(拔节-开花)
Panicle stage
(Jointing-Flowering)
花粒期(开花-成熟)
Anthesis and kernel stage
(Flowering-Maturity)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
土壤水势
Soil water potential
(kPa)
灌溉水量
Irrigation
water
(mm)
粘土Clay -10 40 -35 40 -40 40 -40 40
壤土Loam -10 45 -35 45 -40 45 -40 45
砂土Sand -10 50 -35 50 -40 50 -40 50

Table 3

The effects of water-saving irrigation techniques on grain yield and water use efficiency"

地点/作物
Place/Crop
灌溉方式
Irrigation regime
产量(t/hm2)
Yield
灌溉水量(mm)
Irrigation water
降水量(mm)
Precipitation
水分利用效率(kg/m3)
Water use efficiency
扬州Yangzhou
水稻Rice
常规灌溉
Conventional irrigation
9.05
660
605
0.72
轻干湿交替灌溉
Alternate wetting and moderate soil drying
9.78*
485*
605
0.90*
小麦Wheat
常规灌溉
Conventional irrigatio
7.69
185
380
1.36
控制灌溉
Controlled soil drying irrigation
8.52*
145*
380
1.62*
玉米(夏) Maize (Summer)
常规灌溉
Conventional irrigatio
9.02
190
345
1.69
分区交替灌溉
Root partial and alternate irrigation
9.75*
100*
345
2.19*
连云港Lianyungang
水稻Rice
常规灌溉
Conventional irrigation
8.67
764
507
0.68
轻干湿交替灌溉
Alternate wetting and moderate soil drying
9.50*
597*
507
0.86*
小麦Wheat
常规灌溉
Conventional irrigatio
8.35
255
292
1.52
控制灌溉
Controlled soil drying irrigation
9.00*
155*
292
1.98*
玉米(夏) Maize (Summer)
常规灌溉
Conventional irrigatio
9.20
230
275
1.81
分区交替灌溉
Root partial and alternate irrigation
10.10*
140*
275
2.41*

Table 4

The effects of water-saving irrigation techniques on photosynthesis,productive tillers and canopy leaf angle"

地点/作物
Place/Crop
灌溉方式
Irrigation regime
光合速率
Photosynthesis rate
[μmol/(m2·s)]
蒸腾速率
Transpiration rate
[mmol/(m2·s)]
水分利用效率
Water use efficiency
(mmol CO2/mol H2O)
分蘖成穗率
Productive tillers
(%)
叶片角度
Leaf angle
(°)
扬州Yangzhou
水稻Rice
常规灌溉
Conventional irrigation
19.7
7.72
2.55
64.80
21.8
轻干湿交替灌溉
Alternate wetting and moderate soil drying
19.3
5.41*
3.57*
82.30*
17.7*
小麦Wheat
常规灌溉
Conventional irrigatio
24.8
6.63
3.74
43.50
27.3
控制灌溉
Controlled soil drying irrigation
24.2
5.32*
4.55*
55.80*
23.1*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
37.5
5.39
6.96
-
47.5
分区交替灌溉
Root partial and alternate irrigation
36.1
3.68*
9.81*
-
41.3*
连云港Lianyungang
水稻Rice
常规灌溉
Conventional irrigation
22.9
8.14
2.79
62.20
23.6
轻干湿交替灌溉
Alternate wetting and moderate soil drying
22.3
5.51*
4.05*
80.90*
19.5*
小麦Wheat
常规灌溉
Conventional irrigatio
26.0
6.87
3.78
39.50
28.3
控制灌溉
Controlled soil drying irrigation
25.2
5.46*
4.61*
51.40*
23.7*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
38.1
5.45
6.98
-
48.3
分区交替灌溉
Root partial and alternate irrigation
36.9
3.82*
9.65*
-
43.7*

Table 5

The effects of moderate soil dry during grain-filling stage on hormone balance in inferior spikelets,activity of sucrose phosphate synthase in stem and sucrose synthase in grains,matter remobilization,harvest index"

地点/作物
Place/ Crop
灌溉方式
Irrigation regime
ABA/
GA3
SPS(%)
Sucrose phosphate synthase activity
SuS[nmol/(mg Pro·min)]
Sucrose synthase activity
平均灌浆速率
[mg/(grain·d)]
Mean grain-filling rate
物质运转率(%)
Matter remobilization
收获指数
Harvest index
扬州Yangzhou
水稻Rice
常规灌溉
Conventional irrigation
0.16
65.9
36.4
0.541
61.8
0.466
轻干湿交替灌溉
Alternate wetting and moderate soil drying
0.44*
83.2*
54.5*
0.605*
79.3*
0.514*
小麦Wheat
常规灌溉
Conventional irrigatio
0.41
69.4
41.8
0.831
65.9
0.404
控制灌溉
Controlled soil drying irrigation
0.77*
89.3*
62.7*
0.953*
81.4*
0.442*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
0.45
54.2
30.1
5.856
53.7
0.419
分区交替灌溉
Root partial and alternate irrigation
0.86*
77.2*
53.8*
6.724*
67.2*
0.452*
连云港Lianyungang
水稻Rice
常规灌溉
Conventional irrigation
0.18
69.1
35.0
0.55
63.2
0.464
轻干湿交替灌溉
Alternate wetting and moderate soil drying
0.46*
86.0*
53.3*
0.62*
78.3*
0.512*
小麦Wheat
常规灌溉
Conventional irrigatio
0.37
68.4
43.2
0.82
67.5
0.408
控制灌溉
Controlled soil drying irrigation
0.75*
91.3*
63.7*
0.93*
83.6*
0.448*
玉米(夏)
Maize (Summer)
常规灌溉
Conventional irrigatio
0.47
52.8
29.5
5.79
54.9
0.425
分区交替灌溉
Root partial and alternate irrigation
0.88*
76.2*
55.2*
6.64*
70.6*
0.460*
[1] Emma M . Water:More crop per drop. Nature, 2008,452(7185):273-277.
doi: 10.1038/452273a pmid: 18354452
[2] Zhou S, Li M, Guan Q , et al. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus. Plant Science, 2015,236:44-60.
doi: 10.1016/j.plantsci.2015.03.017
[3] Zhu X J, Yu G R, Wang Q F , et al. Spatial variability of water use efficiency in China's terrestrial ecosystems. Global & Planetary Change, 2015,129:37-44.
doi: 10.1016/j.gloplacha.2015.03.003
[4] Devkota K, Hoogenboom G, Boote K , et al. Simulating the impact of water saving irrigation and conservation agriculture practices for rice-wheat systems in the irrigated semi-arid drylands of central Asia. Agricultural and Forest Meteorology, 2015,214:266-280.
[5] Ockerby S, Fuka S . The management of rice grown on raised beds with continuous furrow irrigation. Field Crops Research, 2001,69:215-226.
doi: 10.1016/S0378-4290(00)00140-4
[6] Shao G, Deng S, Liu N , et al. Effects of controlled irrigation and drainage on growth,grain yield and water use in paddy rice. European Journal of Agronomy, 2015,53:1-9.
[7] Tao H, Brueck H, Dittert K , et al. Growth and yield formation for rice (Oryza sativa L.) in the water-saving ground cover rice production system (GCRPS). Field Crops Research, 2006,95:1-12.
doi: 10.1016/j.fcr.2005.01.019
[8] Lampayan R, Rejesus R, Singleton G , et al. Adoption and economics of alternate wetting and drying water management for irrigated lowland rice. Field Crops Research, 2015,170:95-108.
doi: 10.1016/j.fcr.2014.10.013
[9] 王濮, 鲁来清, 王润正 , 等. 河北吴桥小麦—玉米一年两作超高产探索. 中国农业科技导报, 2000,2(3):12-15.
[10] 张盼峰, 汪江涛, 焦念元 , 等. 轮耕与隔畦灌溉对麦玉两熟作物生长和水分利用效率的影响. 作物杂志, 2013(6):118-122.
doi: 10.3969/j.issn.1001-7283.2013.06.030
[11] 胡梦芸, 张正斌, 徐萍 , 等. 亏缺灌溉下小麦水分利用效率与光合产物积累转运的相关研究. 作物学报, 2007,33(11):1884-1891.
doi: 10.3321/j.issn:0496-3490.2007.10.022
[12] 康绍忠, 史文娟, 胡笑涛 , 等. 调亏灌溉对于玉米生理指标及水分利用效率的影响. 农业工程学报, 1998,14(4):82-87.
[13] 买自珍, 蒋儒龄, 袁丕成 , 等. 宁夏中部扬黄灌溉区地膜玉米膜孔灌溉技术研究. 干旱地区农业研究, 2011,29(2):53-58.
[14] 张昊, 郝春雷, 孟繁盛 , 等. 膜下滴灌条件下不同灌水量对玉米产量及土壤水分的影响. 作物杂志, 2016(1):105-109.
[15] 张婷, 吴普特, 赵西宁 , 等. 垄沟灌溉种植对玉米光合特性及产量的影响. 灌溉排水学报, 2013,32(1):96-98.
[16] Yoshida S, Forno D, Cock J , et al. Determination of sugar and starch in plant tissue.In:Yoshida S.ed.Laboratory Manual for Physiological Studies of Rice.The International Rice Research Institute, Philippines, 1976: 46-49.
[17] 朱庆森, 曹显祖, 骆亦其 . 水稻籽粒灌浆的生长分析. 作物学报, 1988,14(3):182-193.
[18] Richards F J . A flexible growth function for empirical use. Journal of Experimental Botany, 1959,10:290-300.
doi: 10.1093/jxb/10.2.290
[19] 陈远平, 杨文钰 . 卵叶韭休眠芽中GA3、IAA、ABA和ZT的高效液相色谱法测定.四川农业大学学报, 2005(23):498-500.
[20] Yang J C, Zhang J H, Wang Z Q , et al. Activities of enzymes involved in source-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research, 2003,81:69-81.
doi: 10.1016/S0378-4290(02)00214-9
[21] 高俊凤 . 植物生理学实验指导.北京: 高等教育出版社, 2006: 105-107.
[22] Long S P, Zhu X, Naidu S L , et al. Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 2006,29:315-330.
doi: 10.1111/j.1365-3040.2005.01493.x pmid: 17080588
[23] 赵明, 李从锋, 董志强 . 玉米冠层耕层协调优化及其高产高效技术. 作物杂志, 2015(3):70-75.
doi: 10.16035/j.issn.1001-7283.2015.03.013
[24] Duvick D N . Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica, 1977,22:187-196.
[25] Peng S, Khush G S, Virk P , et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008,108:32-38.
doi: 10.1016/j.fcr.2008.04.001
[26] 王丰, 程方民, 刘奕 , 等. 不同温度下灌浆期水稻籽粒内源激素含量的动态变化. 作物学报, 2006,32(1):25-29.
[27] 陶龙兴, 王熹, 黄效林 . 内源IAA对杂交稻强、弱势粒灌浆增重的影响. 中国水稻科学, 2003,17(2):149-155.
[28] 王熹, 陶龙兴, 徐仁胜 , 等. 初论杂交稻粒间顶端优势. 作物学报, 2001,27(6):980-985.
doi: 10.3321/j.issn:0496-3490.2001.06.048
[29] 靳德明, 王维金, 蓝盛银 , 等. 重穗型杂交水稻籽粒灌浆过程中强势和弱势颖花内源IAA、ABA和GA水平的动态状况. 植物生理与分子生物学学报, 2002,28(3):215-220.
doi: 10.3321/j.issn:1671-3877.2002.03.010
[30] 谢光辉, 杨建昌, 王志琴 , 等. 水稻籽粒灌浆特性及其与生理活性的关系. 作物学报, 2001,27(5):557-565.
[31] Ober E S, Setter T L, Madison J T , et al. Influence of water deficit on maize endosperm development.Enzyme activities and RNA transcripts of starch and zein synthesis,abscisic acid,and cell division. Plant Physiology, 1991,97:154-164.
doi: 10.1104/pp.97.1.154
[32] Saini H S, Sedgley M, Aspinall D . Developmental anatomy in wheat of male sterility induced by heat stress,water deficit or abscisic acid. Australian Journal of Plant Physiology, 1984,11:243-253.
doi: 10.1071/PP9840243
[33] Waters S P, Martin P, Lee B T . Influence of sucrose and abscisic acid on the determination of grain number in wheat. Journal of Experimental Botany, 1984,35:829-840.
doi: 10.1093/jxb/35.6.829
[34] Andersen M N, Asch F, Wu F , et al. Soluble invertase expression is an early target of drought stress during the critical,abortion-sensitive phase of young overy development in maize. Plant Physiology, 2002,130:591-604.
doi: 10.1104/pp.005637
[35] 黄锦文, 梁康迳, 梁义元 , 等. 不同类型水稻籽粒灌浆过程内源激素含量变化的研究. 中国生态农业学报, 2003,11(2):11-13.
[36] 刘霞, 穆春华, 尹燕枰 , 等. 花后高温、弱光及其双重胁迫对小麦籽粒内源激素含量与增重进程的影响. 作物学报, 2007,33(4):677-681.
doi: 10.3321/j.issn:0496-3490.2007.04.024
[37] 高松洁, 王文静, 夏国军 , 等. 3小麦大粒品种内源CA3及ABA含量的变化规律. 河南农业大学学报, 2000,34(3):213-219.
doi: 10.3969/j.issn.1000-2340.2000.03.004
[38] Yang J C, Zhang J H . Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany, 2010,61(12):3177-3189.
doi: 10.1364/AO.36.000144 pmid: 20421195
[39] Nakamura Y, Yuki K . Changes in enzyme activities associated with carbohydrate metabolism during development of rice endosperm. Plant Science, 1992,82:15-20.
doi: 10.1016/0168-9452(92)90003-5
[1] Wang Xiaolin, Ji Xiaoling, Zhang Panpan, Zhang Xiong, Zhang Jing. Correlation Analysis between Aboveground Biomass#br# Allocation and Grain Yield in Different Varieties of#br# Foxtail Millet in the Dry Land of Loess Plateau [J]. Crops, 2018, 34(5): 150-155.
[2] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[3] Wenchao Zhang,Yufeng Wang,Yifei Zhang,Jingyu Xu,Qiong Wu,Tianyu Chen,Pengfei Zhang,Chen Pang,Chunshuang Tang,Jian Fu,Kejun Yang. Effects of Different Tillage Methods on Changes of Soil Nutrients and Grain Yield of Maize in Semi-Arid Regions of Songnen Plain [J]. Crops, 2017, 33(4): 123-128.
[4] Caixia Liu,Ming Li,Tianqing Du,Fuzhu Cui,Jianfu Xue,Mengni Chen,Jianying Qi. Effects of Different Pre-Production Patterns on Soybean Yield and Soil Moisture in Semiarid Region [J]. Crops, 2017, 33(3): 121-126.
[5] Wenfei Long,Zhiqiang Fu,Hailin Li. Effects of Nitrogen Application and Planting Density on Fertilizer Use Efficiency of Late Rice Fengyuanyou 299 under the Condition of Water Saving Irrigation [J]. Crops, 2016, 32(5): 124-130.
[6] Haibing He,Ru Yang,Mingming Xue,Liquan Wu. Grain Yield and Economic Returns of Scale Cultivation in Rice [J]. Crops, 2016, 32(5): 152-155.
[7] Zhen Qi,Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yushuang Yang,Mei Wang,Zhongqing Fan,Mingming Guo,Yu Wang,Tong Sun,Xiaocheng Liu. Correlation and Path Analysis on Wheat Yield and Agronomic Indices [J]. Crops, 2016, 32(3): 45-50.
[8] Qiming Zhang,Yongjun Zeng,Weisheng Lü,Shan Huang,Qingyin Shang,Yanhua Zeng,Xueming Tan,Qinghua Shi,Xiaohua Pan. Effects of Nitrogen Application and Transplanting Seedlings Number Per Hole on the Grain Yield and Nitrogen Use Efficiency of Double-Rice by Machine Plug [J]. Crops, 2016, 32(3): 144-150.
[9] . [J]. Crops, 2013, 29(3): 71-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .