Crops ›› 2019, Vol. 35 ›› Issue (2): 51-60.doi: 10.16035/j.issn.1001-7283.2019.02.008

;

Previous Articles     Next Articles

Genetic Analysis of Fruit Hull Rate and Related Traits on Tartary Buckwheat

Yasong Cui,Yan Wang,Lijuan Yang,Chaoxin Wu,Piao Zhou,Pan Ran,Qingfu Chen   

  1. Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, Guizhou, China
  • Received:2018-11-03 Revised:2018-12-20 Online:2019-04-15 Published:2019-04-12
  • Contact: Qingfu Chen

Abstract:

The thin-shell black rice lines BRT2016-1 and BRT2016-2 as the female parents were crossed with the thick-shell wild Tartary buckwheat accession WT2016-1 and common Tartary buckwheat line T2016-1 as the male parents, and five progenies populations including three crosses were produced for this study. The broad-sense heritability, narrow-sense heritability, correlation and path analysis were for six target characters of F2 and F3 populations, including shell percentage, grain length, grain width, grain weight, kernel weight and length/width. Broad-sense heritability of shell rate was 0.71, the range of broad-sense heritability was 0.42-0.91, indicating significant genetic effects. The average narrow-sense heritability was 0.18, and the variation combinations was 0.07-0.27. The difference between broad-sense heritability and narrow-sense heritability was very significant, suggesting great non-additive genetic effects. Broad-sense heritability of 5 target characters (grain length, grain width, grain weight, kernel weight, length/width) related to fruit hull percentage were 0.84, 0.89, 0.90, 0.78 and 0.71, respectively. Narrow-sense heritabilities were 0.32, 0.30, 0.25, 0.21 and 0.28, respectively. Correlation analysis showed that there were significant average positive correlation between shell rate and grain length, grain width and grain weight, the average correlation coefficients of F2 plants and F3 families were 0.077, 0.145, 0.099 and 0.177, 0.253, and 0.428, respectively. There was a negative correlation between shell rate and kernel weight in combination A and combination C, the bigger the kernel weight, the smaller the shell rate. Path analysis showed that grain weight and kernel weight had the greatest direct effect on shell percentage, the former had a positive effect and the latter had a negative effect. The average direct effects of the five hermaphroditic combinations were 4.072 and -4.087, and the average indirect effects were 5.574 and -5.57, the average direct effects of F3 families were 1.284 and -1.251, and the average indirect effects were 2.526 and -2.524, respectively. The indirect effects were greater than the direct effects, indicating that the influence factors of fruit shell percentage were caused by the effects of the target traits. Therefore, the effects of traits such as grain weight and kernel weight should be considered in the selection of low shell percentage, and the selection of grain length, grain width and length/width should be considered.

Key words: Tartary buckwheat, The rate of fruit shell, Broad-sense heritability, Narrow-sense heritability, Direct effect, Indirect effect

Table 1

Basic information for test materials"

编号Number 亲本品种Parental variety 重要特征Important feature 产地Place of production
BRT2016-1 黑米荞 薄壳无腹沟、黑色、裂果、小粒、易脱壳、中秆、早熟 贵州
BRT2016-2
迟开裂型黑米荞
薄壳无腹沟、黑色、裂果、花药迟裂、小粒、易脱壳、中秆、分枝少、茎直立、结实好、晚熟 贵州
T2016-1 长黑粒苦荞 厚壳有腹沟、深黑色、长粒、大粒、难脱壳、中秆、早熟 贵州
WT2016-1 不落粒野苦荞 厚壳有腹沟、大粒、不落粒、难脱壳、中秆、低位分枝细长、早熟 西藏

Fig.1

Parent seeds of buckweat cross combinations Black rice buckwheat (A, B, female parents), Late cracking black rice buckwheat (C, D, female parents), Non-falling wild tartary buckwheat (E, male parent), Long black tartary buckwheat (F, male parent)"

Table 2

Basic information of combinations"

组合编号
Combination number
类别
Category
组合
Combination
A1 A 黑米荞/不落粒野苦荞
A2 黑米荞/不落粒野苦荞
B1 B 迟开裂型黑米荞/不落粒野苦荞
B2 迟开裂型黑米荞/不落粒野苦荞
C C 迟开裂型黑米荞/长黑粒苦荞

Table 3

Variance analysis of related traits in parents"

亲本
Parent
性状
Trait
均值
Mean value
极小值
Min
极大值
Max
方差
Variance
变异系数(%)
Coefficient of variation
峰度
Kurtosis
偏度
Skewness
黑米荞Black rice buckwheat 粒长(cm) 6.59 5.90 7.20 0.100 4.83 0.06 -0.15
粒宽(cm) 5.12 4.80 5.90 0.090 5.72 0.79 0.86
粒重(g) 0.15 0.08 0.24 0.000 25.30 0.78 0.63
果仁重(g) 0.12 0.06 0.18 0.000 28.16 -0.57 0.43
果壳率(%) 25.00 14.00 40.00 0.010 29.52 -0.36 0.59
长/宽 1.29 1.11 1.44 0.010 6.08 0.25 -0.17
迟开裂型黑米荞 粒长(cm) 7.05 6.40 7.60 0.130 5.11 -0.77 -0.36
Late cracking black rice buckwheat 粒宽(cm) 5.36 5.00 5.80 0.058 4.50 -0.55 0.48
粒重(g) 0.42 0.12 0.80 0.086 69.03 -1.97 0.25
果仁重(g) 0.34 0.07 0.65 0.058 70.08 -1.93 0.25
果壳率(%) 20.00 7.00 46.00 0.007 41.27 3.96 1.30
长/宽 1.32 1.14 1.44 0.009 7.38 -0.82 -0.56
不落粒野苦荞 粒长(cm) 8.64 8.30 8.90 0.047 2.51 -1.34 -0.32
Non-falling wild tartary buckwheat 粒宽(cm) 6.69 6.20 7.30 0.090 4.48 1.29 0.65
粒重(g) 1.62 1.40 1.95 0.033 11.31 -0.27 0.61
果仁重(g) 1.02 0.90 1.30 0.017 12.94 1.19 1.29
果壳率(%) 37.00 33.00 42.00 0.001 7.48 -0.83 0.44
长/宽 1.29 1.15 1.37 0.004 4.96 1.87 -1.16
长黑粒苦荞 粒长(cm) 9.98 9.90 10.00 0.003 0.54 5.13 -2.25
Long black tartary buckwheat
粒宽(cm) 4.95 4.84 5.00 0.006 1.51 -1.83 -0.98
粒重(g) 0.31 0.30 0.32 0.000 1.57 -30.00 -0.86
果仁重(g) 0.28 0.26 1.28 0.000 3.64 1.43 -1.54
果壳率(%) 12.00 9.00 13.00 0.000 15.49 4.83 -2.10
长/宽 2.02 2.00 2.06 0.001 1.35 -1.27 1.07

Table 4

Variation of shell rate related traits in F2 and F3 populations"

组合
Group
性状
Trait
株数
Number of plants
中亲值
Mid-
parent
F2 F3 F2与F3 t值
t value of F2and F3
均值
Mean value
变异范围
Range of variation
方差
Variance
均值
Mean value
变异范围
Range of variation
方差
Variance
A 粒长(cm) 408 7.31 7.44 3.80~9.00 0.301 7.86 4.50~9.40 0.263 -12.31**
粒宽(cm) 408 5.76 6.18 4.80~7.00 0.166 6.48 3.61~7.80 0.212 -10.17**
粒重(g) 408 0.10 0.30 0.10~0.43 0.004 0.38 0.23~0.52 0.003 -18.84**
果仁重(g) 408 0.08 0.22 0.02~0.33 0.002 0.29 0.19~0.37 0.001 -22.13**
果壳率(%) 408 25.30 25.30 4.00~44.83 0.004 28.00 8.90~48.21 0.005 -2.42**
长/宽 408 1.27 1.21 0.61~1.52 0.007 1.22 0.70~2.09 0.009 -1.95
B 粒长(cm) 385 7.59 8.20 5.70~10.80 1.313 7.93 6.36~10.32 0.870 3.55**
粒宽(cm) 385 5.83 6.17 4.20~7.70 0.405 6.04 4.47~13.56 0.289 3.22**
粒重(g) 385 0.26 0.80 0.10~2.45 0.589 0.35 0.22~0.50 0.003 11.44**
果仁重(g) 385 0.21 0.58 0.08~1.85 0.311 0.27 0.18~0.45 0.002 10.86**
果壳率(%) 385 23.00 26.25 4.00~50.00 0.005 22.00 6.85~36.40 0.003 8.93**
长/宽 385 1.31 1.39 1.12~1.89 0.051 1.32 0.66~2.09 0.024 1.61
C 粒长(cm) 174 8.50 7.26 3.60~8.80 0.374 7.40 6.52~8.20 0.105 -2.68**
粒宽(cm) 174 5.12 6.55 3.50~8.50 0.446 6.38 5.10~7.40 0.189 -2.92**
粒重(g) 174 0.53 0.33 0.10~0.49 0.006 0.35 0.20~1.21 0.006 2.08**
果仁重(g) 174 0.45 0.24 0.08~0.36 0.003 0.28 0.16~0.86 0.001 6.81**
果壳率(%) 174 15.42 28.00 6.70~50.00 0.006 20.35 7.14~38.46 0.004 -9.85**
长/宽 174 1.68 1.11 0.94~1.46 0.007 1.16 1.02~1.33 0.004 6.57**
平均 粒长(cm) 967 7.72 7.74 3.60~10.80 0.44 7.88 4.50~10.32 0.230 -3.08**
Mean 粒宽(cm) 967 5.65 6.22 3.50~8.50 0.31 6.30 3.61~13.56 0.250 -2.10**
粒重(g) 967 0.25 0.47 0.10~2.45 0.15 0.37 0.20~1.21 0.003 8.00**
果仁重(g) 967 0.20 0.37 0.02~1.85 0.08 0.28 0.16~0.86 0.001 6.79**
果壳率(%) 967 21.83 26.16 4.00~50.00 0.01 23.92 7.14~48.21 0.004 7.03**
长/宽 967 1.38 1.25 0.61~1.89 0.09 1.26 0.66~2.09 0.009 -0.75

Table 5

Variation coefficient and heritability of fruit shell rate related traits in F2-3 populations"

性状
Trait
组合
Group
表型变异系数(%)
Phenotypic variation coefficient
遗传变异系数(%)
Genetic variation coefficient
广义遗传力
Broad-sense
heritability
狭义遗传力
Narrow-sense
heritability
F2 F3 F2 F3
粒长Grain length A平均 7.83 5.95 7.04 5.05 0.81 0.19
B平均 8.94 6.55 8.41 5.69 0.89 0.45
C 8.42 4.37 7.67 2.74 0.83 0.31
ABC平均 8.40 5.87 7.71 4.84 0.84 0.32
粒宽Grain width A平均 7.51 6.92 6.83 6.29 0.83 0.23
B平均 9.22 9.01 8.87 8.61 0.93 0.32
C 10.20 6.82 9.96 6.44 0.95 0.39
ABC平均 8.73 7.74 8.27 7.25 0.89 0.30
粒重Grain weight A平均 27.72 11.51 26.23 8.56 0.90 0.19
B平均 50.45 14.20 49.50 12.66 0.93 0.29
C 23.32 23.12 21.26 20.36 0.83 0.30
ABC平均 35.92 14.91 34.54 12.56 0.90 0.25
果仁重Kernel weight A平均 28.21 10.41 23.08 7.39 0.86 0.17
B平均 50.17 12.28 13.93 14.28 0.93 0.20
C 24.72 13.75 20.21 3.87 0.71 0.34
ABC平均 36.29 11.83 21.35 5.28 0.78 0.21
果壳率Shell rate
A平均 33.12 24.00 27.50 14.50 0.67 0.16
B平均 27.16 22.50 31.50 19.00 0.91 0.27
C 27.70 30.00 18.00 11.00 0.42 0.07
ABC平均 29.65 24.60 27.20 15.60 0.71 0.18
长/宽Length/Width A平均 4.09 7.86 5.20 6.49 0.60 0.18
B平均 7.76 7.22 6.62 5.98 0.75 0.27
C 7.31 5.45 6.74 4.71 0.85 0.48
ABC平均 6.20 7.13 6.10 6.00 0.71 0.28

Table 6

Phenotypic and genetic correlation efficients between fruit shell rates of F2 populations"

组合Group 性状Trait 粒长Grain length 粒宽Grain width 粒重Grain weight 果仁重Kernel weight 果壳率Shell rate 长/宽Length/Width
A 粒长 -0.529** -0.496** -0.502** -0.049 -0.553**
粒宽 -0.287 -0.858** -0.823** -0.189** -0.410**
粒重 -0.087 -0.046 -0.928** -0.298** -0.312**
果仁重 -0.782 -0.139 -0.079 -0.067 -0.269**
果壳率 -0.207 -0.034 -0.019 -0.410 -0.145
长/宽 -0.443 -0.318 -0.281 -0.250 -0.133
B 粒长 -0.081 -0.134** -0.140** -0.091 -0.431**
粒宽 -0.038 -0.667** -0.661** -0.111* -0.276**
粒重 -0.365 -0.133 -0.987** -0.093 -0.286**
果仁重 -0.573 -0.172 -0.485 -0.011 -0.285**
果壳率 -0.823 -0.118 -0.403 -0.504 -0.010
长/宽 -0.189 -0.055 -0.136 -0.112 -0.063
C 粒长 -0.720** -0.582** -0.498** -0.169* -0.167*
粒宽 -0.861 -0.653** -0.567** -0.155* -0.558**
粒重 -0.407 -0.487 -0.922** -0.085 -0.266**
果仁重 -0.256 -0.291 -0.279 -0.293** -0.246**
果壳率 -0.157 -0.177 -0.063 -0.218 -0.007
长/宽 -0.202 -0.792 -0.386 -0.143 -0.140
平均Mean 粒长 - -0.209** -0.130** -0.128** -0.077* -0.743**
粒宽 - - -0.422** -0.418** -0.145** -0.492**
粒重 - - - -0.987** -0.099** -0.170**
果仁重 - - - - -0.009 -0.170**
果壳率 - - - - - -0.030
长/宽 - - - - - -

Table 7

Phenotypic and genetic correlation efficients between fruit shell rates of F3 populations"

组合Group 性状Trait 粒长Grain length 粒宽Grain width 粒重Grain weight 果仁重Kernel weight 果壳率Shell rate 长/宽Length/Width
A 粒长 -0.546* -0.546* -0.546* -0.546* -0.546*
粒宽 0.388 -0.616** -0.639** -0.108* -0.591**
粒重 -0.074 -0.017 -0.890** -0.230** -0.014
果仁重 -0.120 -0.046 -0.037 -0.156** -0.161**
果壳率 -0.198 -0.516 -0.017 -0.707 -0.075
长/宽 -0.148 -0.265 -0.293 -0.283 -0.300
B 粒长 -0.259** -0.679** -0.684** -0.150** -0.818**
粒宽 0.103 -0.492** -0.449** -0.230** -0.307**
粒重 -0.055 -0.290 -0.924** -0.423** -0.298**
果仁重 -0.151 -0.230 -0.999 -0.051 -0.343**
果壳率 -0.845 -0.045 -0.143 -0.126 -0.042
长/宽 0.747 -0.195 -0.178 -0.126 -0.236
C 粒长 -0.592** -0.527** -0.598** -0.308** -0.053
粒宽 0.510 -0.388** -0.520** -0.193* -0.771**
粒重 0.710 -0.328 -0.636** -0.605** -0.075
果仁重 0.287 -0.156 -0.111 -0.072 -0.185*
果壳率 0.562 -0.656 -0.385 -0.102 -0.001
长/宽 -0.115 -0.044 -0.147 -0.000 -0.408
平均Mean 粒长 -0.278** -0.562** -0.574** -0.177** -0.661**
粒宽 -0.525** -0.551** -0.253** -0.508**
粒重 -0.841** -0.428** -0.067*
果仁重 -0.035 -0.052
果壳率 -0.046
长/宽

Table 8

Effects of the traits on fruit shell rates in F2 population"

组合
Group
自变量
Independent
variable
简单相关系数
Simple correlation coefficient
直接作用
Direct effect
间接作用Indirect effect
粒长
Grain length
粒宽
Grain width
粒重
Grain weight
果仁重
Kernel weight
长/宽
Length/Width
合计
Total
A 粒长 0.049 1.240 0.656 0.615 0.622 0.686 2.579
粒宽 0.189 -0.777 -0.411 -0.667 -0.639 0.319 -1.398
粒重 0.298 1.037 0.514 0.890 0.962 -0.324 2.042
果仁重 -0.067 -1.207 -0.606 -0.993 -1.120 0.325 -2.394
长/宽 -0.145 -1.129 -0.624 0.463 0.352 0.304 0.495
B 粒长 0.091 0.235 0.019 -0.031 -0.033 0.101 0.056
粒宽 0.111 -0.046 -0.004 -0.031 -0.030 0.013 -0.052
粒重 0.093 4.062 -0.544 2.709 4.009 -1.162 5.012
果仁重 -0.011 -4.064 0.569 -2.686 -4.011 1.158 -4.970
长/宽 -0.010 -0.206 -0.089 0.057 0.059 0.059 0.086
C 粒长 0.169 0.181 0.130 0.105 0.090 0.030 0.355
粒宽 0.155 -0.165 -0.119 -0.108 -0.094 0.092 -0.229
粒重 0.085 2.321 1.351 1.516 2.140 -0.617 4.390
果仁重 -0.293 -2.457 -1.224 -1.393 -2.265 0.604 -4.278
长/宽 -0.007 -0.118 -0.020 0.066 0.031 0.031 0.108
平均Mean 粒长 0.077 0.041 0.009 0.005 0.005 0.030 0.049
粒宽 0.145 0.131 0.027 0.055 0.055 -0.064 0.073
粒重 0.099 4.072 0.529 1.718 4.019 -0.692 5.574
果仁重 -0.009 -4.087 -0.523 -1.708 -4.034 0.695 -5.570
长/宽 -0.030 0.002 0.001 -0.001 0.000 0.000 0.000

Table 9

Effects of correlated traits on fruit shell rates in population F3"

组合
Group
自变量
Independent
variable
简单相关系数
Simple correlation coefficient
直接作用
Direct
effect
间接作用Indirect effect
粒长
Grain length
粒宽
Grain width
粒重
Grain weight
果仁重
Kernel weight
长/宽
Length/Width
合计
Total
A 粒长 0.049 0.047 -0.026 -0.026 -0.026 -0.026 -0.104
粒宽 0.189 -0.130 0.071 0.080 0.083 -0.077 0.157
粒重 0.298 1.846 1.008 1.137 1.643 -0.026 3.762
果仁重 -0.067 -1.874 -1.023 -1.197 -1.668 0.302 -3.586
长/宽 -0.145 -0.108 -0.059 0.064 0.002 0.017 0.024
B 粒长 0.091 0.064 0.017 0.043 0.044 0.052 0.156
粒宽 0.111 -0.024 -0.006 -0.012 -0.011 0.007 -0.022
粒重 0.093 2.565 1.742 1.262 2.370 0.764 6.138
果仁重 -0.011 -2.329 -1.593 -1.046 -2.152 -0.799 -5.590
长/宽 -0.01 -0.068 -0.056 0.021 -0.020 -0.023 -0.078
C 粒长 0.169 0.758 0.449 0.399 0.453 0.040 1.341
粒宽 0.155 -0.642 -0.380 -0.249 -0.334 0.495 -0.468
粒重 0.085 1.014 0.534 0.393 0.645 -0.076 1.496
果仁重 -0.293 -0.954 -0.57 -0.496 -0.607 0.176 -1.497
长/宽 -0.007 -0.636 -0.034 0.490 0.048 0.118 0.622
平均Mean 粒长 0.177 0.442 0.123 0.248 0.254 0.292 0.917
粒宽 0.253 -0.051 -0.014 -0.027 -0.028 0.026 -0.043
粒重 0.428 1.284 0.722 0.674 1.080 0.086 2.562
果仁重 0.035 -1.251 -0.718 -0.689 -1.052 -0.065 -2.524
长/宽 -0.046 -0.384 -0.254 0.195 -0.026 -0.020 -0.105
[1] 陈庆富 . 荞麦属植物科学. 北京: 科学出版社, 2012.
[2] 林汝法 . 苦荞举要. 北京:中国农业科学出版社, 2013.
[3] 李月, 石桃雄, 顾亮亮 , 等. 苦荞地方资源子实主要性状的遗传变异研究. 植物遗传资源学报, 2014,15(3):504-510.
doi: 10.13430/j.cnki.jpgr.2014.03.008
[4] 杨丽娟, 陈庆富 . 荞麦属植物遗传育种的最新研究进展. 种子, 2018,37(4):52-58.
doi: 10.16590/j.cnki.1001-4705.2018.04.052
[5] Krotov A S, Dranenko E T . An amphidiploid buckwheat,F. giganteum Krotov sp. nova. Byulleten,Vsesoyuznogo Ordena Lenina Instituta Rastenievodstva Imeni N. I. Vavilova, 2017(30):41-45.
[6] Woo S H, Kim S H, Tsai K S , et al. Pollen-tube behavior and embryo development in interspecific crosses among the genus Fagopyrum. Journal of Plant Biology, 2008,51(4):302-310.
doi: 10.1007/BF03036131
[7] 陈庆富 . 荞麦生产状况及新类型栽培荞麦育种研究的最新进展. 贵州师范大学学报(自然科学版), 2018,36(3):1-7.
doi: 10.16614/j.gznuj.zrb.2018.03.001
[8] 陈庆富, 陈其皎, 石桃雄 , 等. 苦荞厚果壳形状的遗传及其与产量因素的相关性研究. 作物杂志, 2017(2):27-31.
doi: 10.16035/j.issn.1001-7283.2015.02.006
[9] 陈庆富 . 荞麦生产100问. 贵州: 贵州民族出版社, 2008.
[10] Wang Y J, Campbell C G . Tartary buckwheat breeding (Fagopyrum tataricum Gaertn.) through hybridization with its rice-tartary type. Euphytica, 2007,156(3):399-405.
doi: 10.1007/s10681-007-9389-3
[11] 饶庆琳, 陈其皎, 陈庆富 . 薄壳苦荞品系籽粒总黄酮含量变异及与主要产量构成要素间的相关性. 江苏农业科学, 2016,44(10):333-336.
doi: 10.15889/j.issn.1002-1302.2016.10.097
[12] 薄颖生, 彭少兵, 翟梅枝 , 等. 核桃青果与坚果外观性状相关性研究. 北方园艺, 2017(8):13-17.
[13] 龚强, 王国荣, 李博 , 等. 大麦皮壳率快速测定方法研究. 长江大学学报(自然科学版), 2017,14(14):47-51.
[14] 陆美琴, 丁守仁 . 二棱大麦粒重、皮壳率和粒形性状的遗传分析. 浙江农业学报, 2017(4):164-168.
[15] Fesenko I N . Non-shattering accessions of Fagopyrum tataricum Gaertn. carry recessive alleles at two loci affecting development of functional abscission layer. Fagopyrum, 2007,23(2):7-10.
[16] Mukasa Y, Suzuki T, Honda Y . Suitability of rice-tartary buckwheat for crossbreeding and for utilization of rutin. Japan Agricultural Research Quarterly, 2009,43(3):199-206.
doi: 10.6090/jarq.43.199
[17] Li C H, Kobayashi K, Yoshida Y , et al. Genetic analyses of agronomic traits in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.). Breeding Science, 2012,62(4):303-309.
doi: 10.1270/jsbbs.62.303 pmid: 3528326
[18] 王庆钰, 乔春贵, 孙云德 , 等. 油用向日葵(Helianthus annuus L.)皮壳率的遗传研究. 中国农业科学, 1993,26(5):38-44.
[19] 杜欢, 张颖, 薛梦瑶 , 等. 大麦株高近等基因系的籽粒性状差异及相关性分析. 华北农学报, 2015,30(5):97-103.
doi: 10.7668/hbnxb.2015.05.016
[20] 徐绍英, 陈文华, 张伟梅 , 等. 二棱大麦籽粒外观品质性状的遗传研究. 浙江大学学报(农业与生命科学版), 2017(6):593-598.
[21] 姚世鸿, 王景佑, 陈庆富 . 遗传学 . 贵阳:贵州人民出版社, 2001: 157-175.
[22] 陈庆富 . 生物统计学. 北京: 高等教育出版社, 2011.
[23] 孔繁玲 . 植物数量遗传学. 北京: 中国农业大学出版社, 2006.
[24] 陈福寿, 李美珍 . 黄麻主要经济性状遗传力的研究. 中国麻业科学, 2017(4):18-22.
[25] 马惠馨, 吴炳玉, 王淑贤 , 等. 辣(甜)椒杂种F2数量性状遗传相关与遗传的研究初报. 沈阳农业大学学报, 1988,19(1):15-20.
[26] 杨光宇, 郑惠玉, 韩春风 . 栽培大豆(G.max)×半野生大豆(G.gracilis)后代主要农艺性状遗传参数的初步分析. 作物学报, 1992,18(6):439-446.
[27] 田硕, 张喜春 . 番茄果实主要品质性状的配合力及遗传力分析. 中国农学通报, 2014,30(13):112-117.
[28] 向理军, 雷中华, 石必显 , 等. 油用向日葵数量性状的遗传变异和相关分析及育种选择. 黑龙江农业科学, 2017(9):35-38.
doi: 10.3969/j.issn.1002-2767.2010.09.011
[29] Tan Y F, Xing Y Z, Li J X , et al. Genetic bases of appearance quality of rice grains in Shanyou 63,an elite rice hybrid. Theoretical and Applied Genetics, 1999,99(3/4):642-648.
doi: 10.1007/s001220051279 pmid: 22665200
[30] Takeda S, Matsuoka M . Genetic approaches to crop improvement:responding to environmental and population changes. Nature Reviews Genetics, 2008,9(6):444-457.
doi: 10.1038/nrg2342 pmid: 18475268
[31] 梁龙兵, 陈其皎, 石桃雄 , 等. 苦荞杂交后代主花序特征遗传变异研究. 河南农业科学, 2016,45(5):13-17.
doi: 10.15933/j.cnki.1004-3268.2016.05.003
[32] Radovan M, Kluwer A . Path-coefficient analysis of some yield components of sunflower (Helianthus annuus L.). Euphytica, 1992,60(3):201-205.
doi: 10.1007/BF00039399
[1] Song Lifang,Feng Meichen,Zhang Meijun,Xiao Lujie,Wang Chao,Yang Wude,Song Xiaoyan. Effects of Exogenous Selenium on the Growth and Development of Tartary Buckwheat and Selenium Content in Grains [J]. Crops, 2019, 35(3): 150-154.
[2] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao [J]. Crops, 2019, 35(3): 37-41.
[3] Yu Fan,Hongli Wang,Feng He,Dili Lai,Jiajun Wang,Yue Song,Dabing Xiang. Nutritional Quality in Seeds of Tartary Buckwheat Affected by After-Ripening [J]. Crops, 2018, 34(1): 96-101.
[4] Yue Song,Dabing Xiang,Houbing Huang,Yu Fan,Shuang Wei,Sai Zhang. Lodging Resistance Identification and Evaluation of Different Tartary Buckwheat Cultivars [J]. Crops, 2017, 33(6): 65-71.
[5] Xiushi Yang,Zhongxian Guo,Huimin Guo,Hui Wang,Sancai Liu. Effects of Sowing Date and Seeding Density on the Yield and Quality of Buckwheat [J]. Crops, 2017, 33(1): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[9] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[10] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .