Crops ›› 2018, Vol. 34 ›› Issue (5): 71-76.doi: 10.16035/j.issn.1001-7283.2018.05.011

Previous Articles     Next Articles

Multivariate Analysis and Evaluation on Agronomic Traits and Grain Amylopectin Content of Barley

Wang Lei,Zhang Xiangping,Li Runxi,Niu Xiaoxia,Yang Shimei,Yan Zongshan,Zhang Ziqiang   

  1. Gansu Academy of Agri-Engineering Technology, Wuwei 733006, Gansu, China
  • Received:2018-04-09 Revised:2018-08-15 Online:2018-10-15 Published:2018-10-12
  • Contact: Xiangping Zhang

Abstract:

To discover the phenotype characteristics of higher-amylopectin barley, nine agronomic traits of 16 higher-amylopectin barley genotypes had been investigated for genetic diversity, which based on principal components and cluster analysis. The results indicated that the coefficient variation of awn length (43.26%) was the highest, followed by the number of kernels per spike, and the coefficient of variation of grain width (4.76%) was the lowest among nine agronomic traits. The principal component analysis showed that accumulation indices of 78.844% from the top three principal components, which were grain size factor, kernels per spike factor, and plant type factor. Correlation analyses indicated that there was significant negative correlation between plant height and amylopectin content. Cluster analysis classified all tested materials into 4 categories. The group Ⅰ and Ⅱ had traits of dwarf and low yield. The group Ⅲ had the highest 1000-grain weight and the longest awn length among all varieties. The group Ⅳ had high stalk. In order to improve agronomic traits of waxy barley (Ganken 5 and C2-1), high-quality parents should be selected from the group Ⅳ. In conclusion, principal component analysis and cluster analysis could make a comprehensive evaluation on main agronomic traits in barley, which could provide better germplasm resources for the parents selection for breeding new barley cultivars with higher-amylopectin.

Key words: Barley, Agronomic traits, Principal components analysis, Cluster analysis

Table 1

Sixteen tested barley genetic resources"

编号No. 名称Name 带壳性Covering 棱形Row
1 ZDM09113
2 ZDM08405
3 C2-1
4 甘垦6号Ganken 6
5 ZDM08990
6 ZDM00875
7 ZDM07094
8 ZDM07171
9 ZDM07005
10 ZDM08791
11 ZDM09222
12 ZDM07211
13 ZDM05672
14 ZDM00478
15 甘垦5号Ganken 5
16 YJ-76

Table 2

The difference of major traits of 16 barley germplasms"

材料
Material
株高(cm)
Plant
height
穗下节长(cm)
The length of internode
below the spike
单穗粒数
Kernels per spike
穗长(cm)
Spike
length
粒长(cm)
Grain
length
粒宽(cm)
Grain
width
单穗粒重(g)
Kernel weight per spike
千粒重(g)
1000-grain
weight
芒长(cm)
Awn
length
支链淀粉含量(%)
Amylopectin
content
ZDM09113 77.50 30.50 16.50 4.83 0.833 0.347 0.70 36.57 13.62 75.52
ZDM08405 103.42 42.25 18.17 5.00 0.833 0.360 0.77 39.43 6.67 72.39
C2-1 88.50 29.00 17.75 6.00 0.823 0.340 0.69 36.06 10.50 95.77
甘垦6号Ganken 6 105.43 28.36 29.71 9.93 0.807 0.367 1.31 41.83 15.14 74.70
ZDM08990 99.20 36.10 28.60 4.84 0.837 0.393 1.49 48.90 11.10 75.04
ZDM00875 106.00 34.25 36.75 6.00 0.803 0.347 1.28 35.20 10.67 76.11
ZDM07094 96.42 32.50 31.33 5.16 0.787 0.347 1.32 39.13 0.00 75.89
ZDM07171 98.20 36.60 40.20 6.60 0.790 0.383 1.86 42.63 4.40 75.89
ZDM07005 105.50 32.20 28.80 5.00 0.810 0.380 1.42 45.50 13.10 76.11
ZDM08791 102.57 33.71 49.00 6.57 0.823 0.370 2.23 40.17 11.64 70.61
ZDM09222 63.83 20.33 29.00 5.00 0.837 0.373 1.34 41.60 13.95 73.89
ZDM07211 104.36 34.50 53.14 7.92 0.810 0.370 1.92 36.70 4.67 70.42
ZDM05672 108.83 36.75 46.17 6.66 0.797 0.363 2.00 42.13 11.58 71.07
ZDM00478 102.92 28.92 43.67 5.08 0.710 0.343 1.28 31.86 8.78 75.30
甘垦5号Ganken 5 56.31 23.44 39.25 4.43 0.673 0.350 1.32 31.46 5.29 95.64
YJ-76 96.40 31.80 22.40 9.20 0.950 0.397 1.12 48.33 14.10 72.77
变异系数(%)
Variation coefficient
15.96 16.10 33.36 25.72 7.080 4.760 31.70 12.51 43.26 9.70

Table 3

The principal components of barley germplasms by analysis of main agronomic traits"

性状Trait 主成分1 The first PC 主成分2 The second PC 主成分3 The third PC
株高Plant height 0.235 0.212 0.831
穗下节长Internode length below the spike 0.072 -0.003 0.960
单穗粒数Kernels per spike -0.174 0.965 0.075
穗长Spike length 0.593 0.251 0.133
粒长Grain length 0.799 -0.387 0.227
粒宽Grain width 0.846 0.219 0.111
单穗粒重Kernel weight per spike 0.194 0.937 0.147
千粒重1000-grain weight 0.874 -0.060 0.238
芒长Awn length 0.647 -0.244 -0.352
特征值Eigen value 3.292 2.418 1.386
贡献率Contribution rate (%) 36.576 26.865 15.403
累计贡献率Accumulative percentage (%) 36.576 63.441 78.844

Table 4

Correlation coefficients between agronomic traits and grain amylopectin content of barley"

性状
Trait
株高
Plant
height
穗下节长
Internode length
below the spike
单穗粒数
Kernels
per spike
穗长
Spike
length
粒长
Grain
length
粒宽
Grain
width
单穗粒重
Kernel weight
per spike
千粒重
1000-grain
weight
芒长
Awn
length
支链淀粉含量
Amylopectin
content
株高 1
穗下节长 0.744** 1.000
单穗粒数 0.252 0.061 1
穗长 0.418 0.084 0.153 1
粒长 0.245 0.268 -0.458 0.447 1
粒宽 0.196 0.212 0.035 0.372 0.574* 1
单穗粒重 0.324 0.183 0.875** 0.238 -0.148 0.394 1
千粒重 0.312 0.299 -0.239 0.315 0.714** 0.878** 0.202 1
芒长 0.009 -0.260 -0.317 0.283 0.470 0.283 -0.149 0.375 1.
支链淀粉含量 -0.572* -0.460 -0.258 -0.303 -0.436 -0.453 -0.423 -0.453 -0.165 1

Fig.1

Cluster diagram of barley germplasms based on agronomic traits"

[1] 扬乌尔里希 . 大麦生产、改良与利用. 杭州: 浙江大学出版社, 2012: 545.
[2] 纽曼 . 食用与保健大麦: 科学、技术和产品. 杭州:浙江大学出版社, 2010: 55-57.
[3] 杨智敏, 孔德媛, 杨晓云 , 等. 青稞籽粒淀粉含量的差异. 麦类作物学报, 2013,33(6):1139-1143.
doi: 10.7606/j.issn.1009-1041.2013.06.012
[4] 陈晓静, 陈和, 陈健 , 等. 功能型大麦——糯性裸大麦开发前景探讨. 河北农业科学, 2011,15(6):82-84.
[5] 张想平, 雷耀湖, 何庆祥 , 等. 裸大麦垦啤黑糯1号的品种特性及产业化开发. 大麦与谷类科学, 2010(3):46-47.
[6] 刘亚楠 . 大麦种质资源遗传多样性研究及种质的评价与筛选. 扬州:扬州大学, 2017.
[7] 解松峰, 欧行奇, 张百忍 , 等. 大麦引进种质资源表型的多样性与模糊聚类分析. 干旱地区农业研究, 2010,28(5):5-14.
[8] 郜战宁, 冯辉, 薛正刚 , 等. 28个大麦品种(系)主要农艺性状分析. 作物杂志, 2018(1):77-82.
[9] 杜欢, 马彤彤, 侯晓梦 , 等. 20对大麦株高近等基因系农艺与产量性状差异及相关性分析. 华北农学报, 2016,31(5):114-121.
doi: 10.7668/hbnxb.2016.05.017
[10] 颜昌兰, 白文琴, 郭超 , 等. 青稞品种稳定性及适应性的AMMI模型分析. 干旱地区农业研究, 2016,34(2):157-162.
[11] 沈会权, 张英虎, 栾海业 , 等. 江苏二棱大麦农艺、籽粒和品质性状的特征及其相关性分析. 麦类作物学报, 2016,36(3):379-385.
[12] 张新忠, 李英哲, 郭宝健 , 等. 二棱大麦与六棱大麦籽粒性状的差异性及其相关性. 麦类作物学报, 2016,36(11):1474-1481.
[13] 朱彩梅 . 中国糯大麦种质资源及Wx基因的遗传多样性研究. 北京:中国农业科学院作物科学研究所, 2009.
[14] 张想平, 雷耀湖, 李润喜 , 等. 食用糯大麦新品种-甘垦5号. 麦类作物学报, 2013,33(4):848.
doi: 10.7606/j.issn.1009-1041.2013.04.042
[15] 邵珊珊 . 糯大麦与非糯大麦胚乳淀粉体发育、消亡及其淀粉理化性质的比较研究. 扬州:扬州大学, 2017.
[16] 经艳芬, 边芯, 桃联安 , 等. 云南割手密血缘F1创新种质的因子和聚类分析. 植物遗传资源学报, 2014,15(1):177-181.
[17] 杜晓东, 赵宏伟, 王敬国 , 等. 氮肥运筹对寒地粳稻淀粉合成关键酶活性及淀粉积累的影响. 作物学报, 2012,38(1):159-167.
doi: 10.3724/SP.J.1006.2012.00159
[18] 万述伟, 宋凤景, 郝俊杰 , 等. 271份豌豆种质资源农艺性状遗传多样性分析. 植物遗传资源学报, 2017,18(1):10-18.
[19] Golam F, Alamgir M A, Rahman M M , et al. Evaluation of genetic variability of kenaf (Hibiscus cannabinus L.) from different geographic origins using morpho-agronomic traits and multivariate analysis. Australian Journal of Crop Science, 2011,5(13):1882-1890.
[20] Faruq G, Alamgir M A, Rahman M M , et al. Morphological charecterization of kenaf (Hibiscus cannabinus L.) in Malaysian tropical environment using multivariate analysis. The Journal of Animal & Plant Sciences, 2013,23(1):60-67.
[21] 薛香, 郜庆炉, 杨忠强 . 小麦品质性状的主成分分析. 中国农学通报, 2011,27(7):38-41.
[22] 刘鹏飞, 唐君兴, 曾慕衡 , 等. 糯玉米支链淀粉含量与农艺性状的相关及通径分析. 湖北农业科学, 2009,48(3):582-584.
[23] 要燕杰, 高翔, 吴丹 , 等. 小麦农艺性状与品质特性的多元分析与评价. 植物遗传资源学报, 2014,15(1):38-47.
[1] Wu Ruixiang,Yang Jianchun,Wang Liqin,Guo Xiujuan. Evaluation of the Adaptability of Flax Drought Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[2] Zhang Yizhong,Zhou Fuping,Zhang Xiaojuan,Shao Qiang,Yang Bin,Liu Qingshan. Identification and Cluster Analysis of Photosynthetic Characters and WUE in Sorghum Germplasm [J]. Crops, 2018, 34(5): 45-53.
[3] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars [J]. Crops, 2018, 34(4): 69-78.
[4] Bin Zhang,Jinxiu Li,Zhen Wang,Hao Feng,Jinbang Li. Correlation and Cluster Analysis of Agronomic Traits in Wheat Lines [J]. Crops, 2018, 34(3): 57-60.
[5] Maolin Yue,Weirong Xue,Ruidong Zhang,Zhongxiao Yue,RuiZhou Lü,Pengyan Guo. Effects of Different Row Spaces on Agronomic Traits and Yield of Millet [J]. Crops, 2018, 34(2): 93-96.
[6] Ruixin Zhang,Tianbao Ren,Zhe Zhao,Gang Wen,Mingqin Zhao. Effects of Transplanting Date on Quality and Main Economic Characters of Cigar in Five Fingers Group [J]. Crops, 2018, 34(2): 148-153.
[7] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines) [J]. Crops, 2018, 34(1): 77-82.
[8] Pengyan Guo,Caiping Wang,Jiecheng Ren,Jiping Zhao,Ying Xu,Maolin Yue. Genetic Diversity of Agronomic Traits of Mung Beans from Different Geographical Sources [J]. Crops, 2017, 33(6): 55-59.
[9] Nannan Lu,Lihua Yan,Chongke Zheng,Haibo Yin,Shanli Guo,Xianzhi Xie. Effects of Salt Stress on Growth and Agronomic Traits of Yanfeng 47 and Yanjing 456 [J]. Crops, 2017, 33(5): 106-111.
[10] Han Yan,Hanglin Song,Li Zhang,Jing Yan,Xianji Shi,Shimiao Zhu,Lu Liu,Hulin Li. Effects of Cadmium Stress on Agronomic Traits and Physiological and Biochemical Indexes of Flue-Cured Tobacco [J]. Crops, 2017, 33(5): 156-161.
[11] Haihua Luo,Deyi Shao,Gong Chen,Xiumin Xu,Xin Gao,Changkai Yuan,Jinjian Peng,Feiyu Tang. Comparative Analysis of Trait Correlation between Conventional Varieties (Lines) and Hybrids of Cotton [J]. Crops, 2017, 33(5): 31-37.
[12] Jizhen Yu,Rui Wang,Pengjie Zhan,Jun'ai Ping,Fuyao Zhang. Diversity of Agronomic and Quality Traits of Major Sorghum Hybrids in China [J]. Crops, 2017, 33(5): 49-54.
[13] Shujie Wang,Hui Feng,Zhanning Gao,Zhenggang Xue,Yongqian Yang,Zhengmao Pan,Chunsheng Zhang. Effects of Nitrogen Fertilization Rate on Grain Filling and Yield of Two Barley Varieties with Different Row Type [J]. Crops, 2017, 33(4): 129-133.
[14] Wei Zhang,Yang Zhang,Weijun Zhao,Rongfeng Shao,Huahu Bu,Yuhui Chang,Jinmei Li,Huayun Wang. Effects of Spraying Uniconazole on Agronomic Traits and Lodging Rate of Sweet Sorghum [J]. Crops, 2017, 33(4): 113-116.
[15] Weihai Hou,Jianlin Wang, ,Dan Hu. Comparison of Photosynthesis-Light Response Curve Fitting Model of Hulless Barley [J]. Crops, 2017, 33(4): 96-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .