Crops ›› 2019, Vol. 35 ›› Issue (6): 177-181.doi: 10.16035/j.issn.1001-7283.2019.06.028

Previous Articles     Next Articles

Pathogen Identification and Fungicide Screening of Stem Base Rot Disease on Pinellia pedatisecta

Han Xing1,2,He Yunzhuan1,Kang Zhanhai1,Wang Gaoyang1,Wang Bing1,Li Yaning1,Liu Daqun1,2   

  1. 1College of Plant Protection, Agricultural University of Hebei/Biological Control Center of Plant Diseases and Plant Pests of Hebei Province/National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding 071001, Hebei, China
    2Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2018-09-28 Revised:2019-08-27 Online:2019-12-15 Published:2019-12-11
  • Contact: Yaning Li

Abstract:

Stem base rot is a serious disease with high incidence rate on the production of Pinellia pedatisecta in Anguo city, Hebei Province. Isolation, identification, pathogenicity and screening of its fungicides were carried out in our study. The pathogen was identified as Pythium aphanidermatum through measuring morphological characteristics and rDNA-ITS sequence analysis. Toxicity of five common chemical fungicides, two biological fungicides and crude antibiotic extracts of Streptomyces roseoflavus Men-myco-93-63 to Py. aphanidermatum was determined in laboratory. The results showed that 35% metalaxyl-M ES, crude antibiotic extracts of S. roseoflavus Men-myco-93-63, 40% flusilazole EC, and 99% hymexazol TC had certain inhibition with EC50 of 12.81, 41.74, 54.16, and 56.90μg/mL respectively. While the inhibitory effects of 1×10 11 spores per gram Bacillus subtilis WP, 1×10 6spores per gram Py. oligandrum WP, 3% metalaxyl·hymexazol AS and 50% dimethomorph WP were not obvious.

Key words: Pinellia pedatisecta, Stem base rot disease, rDNA-ITS, Pythium aphanidermatum, Toxicity measurement

Table 1

Concentration setting of each tested fungicides"

供试药剂Test fungicide 浓度梯度Concentration set (mg/L)
3%甲霜·恶霉灵AS 3% metalaxyl·hymexazol AS 25 50 100 200 500
50%烯酰吗啉WP 50% dimethomorph WP 10 20 50 200 500
40%氟硅唑EC 40% flusilazole EC 10 20 40 80 160
99%恶霉灵TC 99% hymexazol TC 25 50 100 200 400
35%精甲霜灵ES 35% metalaxyl-M ES 1.25 2.5 5 10 20
1×106孢子/g寡雄腐霉菌WP 1×106 spores per gram Py. oligandrum WP 2.5 5 10 20 50
1×1011芽孢/g枯草芽孢杆菌WP 1×1011 spores per gramBacillus subtilis WP 0.2 1 5 25 125
玫瑰黄链霉菌Men-myco-93-63抗生素粗提物 Crude antibiotic extracts of S. roseoflavus Men-myco-93-63 12.5 25 50 100 200

Fig.1

Phylogenetic tree of N4 based on rDNA-ITS sequences"

Table 2

Toxicity test of fungicides to Py. aphanidermatum in laboratory"

编号
No.
供试药剂Test fungicide 毒力回归方程
Virulence regression equation
R2 EC50(μg/mL)
1 35%精甲霜灵ES 35% metalaxyl-M ES Y=1.00X+3.89 0.974 12.81
2 玫瑰黄链霉菌Men-myco-93-63抗生素粗提物
Crude antibiotic extracts of S. roseoflavus Men-myco-93-63
Y=1.55X+2.49 0.988 41.74
3 40%氟硅唑EC 40% flusilazole EC Y=1.70X+2.05 0.992 54.16
4 99%恶霉灵TC 99% hymexazol TC Y=1.59X+2.20 0.990 56.90
5 1×1011芽孢/g枯草芽孢杆菌WP 1×1011spores per gram B. subtilis WP Y=0.49X+3.76 0.929 359.80
6 1×106孢子/g寡雄腐霉菌WP 1×106 spores per gram Py. oligandrum WP Y=0.54X+3.59 0.976 414.50
7 3%甲霜·恶霉灵AS 3% metalaxyl·hymexazol AS Y=0.83X+2.56 0.981 864.00
8 50%烯酰吗啉WP 50% dimethomorph WP Y=1.13X+1.28 0.970 1 940.00
[1] 秦彩玲, 胡世林, 刘君英 , 等. 有毒中药天南星的安全性和药理活性的研究. 中草药, 1994,25(10):527-530.
[2] 朱铭伟, 周抗美, 丁声颂 . 掌叶半夏总蛋白对卵巢癌细胞株及人脐造血细胞的作用. 上海医科大学学报, 1999,26(6):455-456,458.
[3] 孙稚颖, 周凤琴 . 虎掌南星药材产地加工方法的初步研究. 中国现代中药, 2009,11(3):28-29.
[4] 张丽春 . 中药“虎掌”与“天南星”的本草学考证. 兰州医学院学报, 2002,28(3):37-40.
[5] 天南星病虫害防治. (2015-03-24)[2018-09-01]. .
[6] 薛晓芳 . 玉米茎基腐病菌生物学特性及品种抗病性的研究. 合肥:安徽农业大学, 2013.
[7] 牛亚娟 . 小麦茎基腐病药剂防治技术研究. 郑州:河南农业大学, 2014.
[8] 张建文 . 张掖市番茄茎基腐病及其防治技术研究. 兰州:甘肃农业大学, 2005.
[9] 黄志鹏 . 红掌茎基腐病病原菌鉴定及防治药剂的筛选. 广州:仲恺农业工程学院, 2013.
[10] 方中达 . 植病研究法(第三版). 北京: 中国农业出版社, 1988: 122-124,138.
[11] 陈吉良, 黄小龙, 吴安迪 , 等. 一种快速高效提取病原真菌DNA作为PCR模板的方法. 菌物学报, 2011,30(1):147-149.
[12] 陆家云 . 植物病原真菌学. 北京: 中国农业出版社, 2001: 84-85.
[13] 楼兵干 . 杭州地区腐霉种及腐霉属分子系统学研究. 杭州:浙江大学, 2005.
[14] 余永年 . 中国真菌志——霜霉目(第6卷). 北京: 科学出版社, 1998: 67.
[15] 楼兵干, 张炳欣 . 基于rDNA ITS序列探讨部分腐霉种的系统发育与其形态特征. 菌物学报, 2005,24(2):207-220.
[16] 商靖, 刘雪峰, 潘存德 , 等. 核桃基腐病的病原鉴定. 林业科学, 2010,46(12):97-101.
doi: 10.11707/j.1001-7488.20101216
[17] 周晓云, 游春平 . 红掌根腐病病原鉴定及其PCR检测方法. 菌物学报, 2013,40(5):989-996.
[18] 柴兆祥, 李金花, 楼兵干 , 等. 玉米根围土壤中腐霉菌的分离鉴定及核糖体DNA-ITS序列分析. 草业学报, 2009,18(3):126-135.
doi: 10.11686/cyxb20090317
[19] Lévesque C A, Harlton C E, Arthur W A M . Identification of some oomycetes by reverse dot blot hybridization. Phytopathology, 1998,88(3):213-222.
doi: 10.1094/PHYTO.1998.88.3.213 pmid: 19700851
[20] Utkhede R S, Lévesque C A, Dinh D . Pythium aphanidermatum root rot in hydroponically grown lettuce and the effect of chemical and biological agents on its control. Canadian Journal of Plant Pathology, 2000,22(2):138-144.
doi: 10.1080/07060660009500487
[21] 杨翠云, 胡亚萍, 李春华 . 上海地区一品红根腐病病原菌和药剂筛选研究. 上海农业学报,2003(3):87-89.
[22] 张全, 于春雷, 张小兵 , 等. 4种杀菌剂对瓜果腐霉病菌的室内毒力及田间防效测定. 农业科学与管理, 2001,32(12):47-49.
[23] 李华义 . 安国掌叶半夏疫病的病原鉴定及其药剂筛选. 保定:河北农业大学, 2016.
[1] Geng Zhang,Yijiang Meng,Xiaosha Jin,Shujun Ge. Effects of Seed Stem Type on Yield and Quality of Medicinal Plant Pinellia pedatisecta Schott [J]. Crops, 2017, 33(2): 168-172.
[2] Hui Li,Geng Zhang,Yijiang Meng,Shujun Ge. Establishment of Virus-Elimination and Rapid Propagation System of Pinellia pedatisecta Schott [J]. Crops, 2016, 32(3): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .