Crops ›› 2019, Vol. 35 ›› Issue (6): 168-176.doi: 10.16035/j.issn.1001-7283.2019.06.027

Previous Articles     Next Articles

A Rapid Detection Method for Potato Late Blight Caused by Phytophthora infestans Based on qPCR and LAMP Assays

Zhu Juli1,2,3,Liang Jingsi1,2,3,Zhang Pei1,Wang Weiwei1,2,3,Lin Tongsiqi1,Xie Xinyu1,Su Rui1,Tang Wei1,2,3   

  1. 1School of Life Science, Yunnan Normal University, Kunming 650500, Yunnan, China
    2Joint Academy of Potato Science, Yunnan Normal University, Kunming 650500, Yunnan, China
    3Key Laboratory of Potato Biology of Yunnan Province, Kunming 650500, Yunnan, China
  • Received:2019-05-24 Revised:2019-08-26 Online:2019-12-15 Published:2019-12-11
  • Contact: Wei Tang

Abstract:

Phytophthora infestans can infect many kinds of Solanaceae plants. Potato late blight (PLB) caused by P. infestans is a most severe disease in the potato production. To better and fast diagnose PLB in the fields, quantitative PCR (qPCR) and Loop-mediated isothermal amplification (LAMP) primers were designed based on the P. infestans T30-4 whole genome shotgun contig 1.18131. After amplification conditions optimized, both specificity and sensitivity were detected. Finally, developed qPCR and LAMP methods were used to detect PLB incidence and compared with traditional isolation method on harvested potato tubers in the fields. Specific detection showed that qPCR and LAMP were positive amplification only in the presence of P. infestans DNA template, and were no amplification in the presence of host and other microorganism DNA. Moreover, as low as 1×10 -6ng/μL gDNA was detected using both qPCR and LAMP methods, while the sensitivity of primers showed no significant difference in the presence of P. infestans DNA template, host and other microorganism DNA. Detecting harvested tubers in the field using two methods in Dali, Lijiang and Kunming, qPCR and LAMP showed no significant difference but extremely significant difference between two fast detection methods and morphology based identification. Additionally, in Dali, Lijiang and Kunming, PLB incidence of the two molecular detection methods were both higher than morphology based identification method, in which qPCR detection method was 12.00%, 2.00% and 8.70% higher than morphology based identification method, and LAMP detection method was 11.30%, 2.00% and 8.70% higher than morphology based identification method, respectively.

Key words: Quantitative PCR (qPCR), Loop-mediated isothermal amplification (LAMP), Phytophthora infestans, Latent infection, Detection

Table 1

Strain information of oomycetes and other potato related pathogens for qPCR and LAMP detection"

分类
Clossify
编号
No.
菌株
Strain

Species
寄主(分离部位)
Hosts (Isolation source)
来源
Source
ITS序列
ITS sequence
卵菌 1 110P Phytophthora infestans Solanum tuberosum (leaf) 中国云南 LS479123
Oomycetes 2 XD1213 P. infestans S. tuberosum(leaf) 中国云南 LS479124
3 XD15 P. infestans S. tuberosum(leaf) 中国云南 LS479193
4 JC1207 P. infestans S. tuberosum(leaf) 中国云南 LS479126
5 XD1314 P. infestans S. tuberosum(leaf) 中国云南 LS479127
6 XA-4 P. infestans S. tuberosum(tuber) 中国云南 LS479171
7 DN111 P. infestans S. tuberosum(unknown) 日本北海道 LS479169
8 80029 P. infestans S. tuberosum(unknown) 荷兰瓦格宁根 LS479173
9 88069
P. infestans
Lycopersicon esculentum(leaf) 荷兰瓦格宁根 LS479172
10 Pds13 P. sojae Glycine max(leaf) 中国云南 LS479895
11 Ddr1231 P. parasitica Nicotiana tabacum (leaf) 中国云南 LS479896
12 LL2480 P. capsica Capsicum annuum(fruit) 中国云南 LS479897
13 Fuz37 Pythium acanthicum Saccharum officiarum L. (root) 中国云南 LS479899
真菌 14 AT1289 Alternaria alternate S. tuberosum(leaf) 中国云南 LS479189
Fungus 15 Hz1177 Synchytrium endobioticum S. tuberosum(root) 中国云南 LS479191
16 Hz1608 Fusarium solani S. tuberosum(leaf) 中国云南 LS479188
细菌 17 Hh1503
Clavibacter michiganensissubsp. Sepedonicus S. tuberosum(tuber) 中国云南 LS479190
Bacteria 18 Hhrf1
Pectobacterium carotovorum subsp.Carotovorum S. tuberosum(tuber)
中国云南 LS479898
19 Hhqk1 Ralstonia solanacearum S. tuberosum(stem) 中国云南 LS479192

Table 2

LAMP and real-time fluorescent qPCR primers"

扩增类型PCR type 引物名称Primer name 序列Sequence (5'-3') 目标长度Target length (bp)
qPCR infnew1-F ACCACACCTAAAAACTTTCCACGT 241
infnew1-R CATCCACTGCTGAAAGTTGC
LAMP F3 ACCCAATAGTTGGGGGTCTT
B3 AGCGTTCTTCATCGATGTGC
BIP CTGTGGGGACGAAAGTCTCTGCGC
CTAGACATCCACTGCTGA
FIP CGAAGTCCAAACGCTCGCCTTGCT
TTATTGCTGGCGGCTA

Fig.1

Neighbor-joining analysis of Blast results Middle brackets represent the position of contig 1.18131"

Fig.2

P. infestans species-specific test results by optimized qPCR"

Fig.3

Specific test and sensitive test by qPCR for species A: P. infestans species specific test by qPCR, 1: P. infestans gDNA; 2: Mixed solution with P. infestans gDNA; 3: Mixed solution but without P. infestans gDNA; 4: ddH2O. B: Sensitive test, sensitive test profiles of 10-fold serial dilutions of P. infestans (1×10-6~1×10-1ng/μL) to create standard curve; E: Reaction efficiency (103%). C: Sensitive test with the presentation of host DNA, quantitative real-time PCR (qPCR) amplification profiles of 10-fold serial dilutions of P. infestans (1×10-6~1×10-1ng/μL) using infnew1 primers with host gDNA; E: Reaction efficiency (108%)"

Fig.4

Specific test and sensitive test by LAMP for species A: LAMP using 19 isolates; B: Observation of intensity change of positive amplification by SYBR Green staining under ultraviolet light; C: LAMP products analyzed by 2.0% agarose gel"

Table 3

PLB incidence of potato tubers caused by P. infestans determined by LAMP, qPCR and morphology observation"

地区
Region
PLB发病率a (%)
PLB incidencea
样品数
Number of samples
症状b
Disease symptomsb
LAMP qPCR 形态学c
Morphologyc
大理Dali 32.50±10.80 150 77 (51.30%) 78 (52.00%) 79 (52.70%) 61 (40.70%)
丽江Lijiang 12.66±4.25 150 21 (14.00%) 21 (14.00%) 21 (14.00%) 18 (12.00%)
昆明Kunming 22.71±11.62 150 48 (32.00%) 46 (30.70%) 46 (30.70%) 33 (22.00%)

Table 4

Number of various microbe isolated from tuber samples"

地点Site 致病疫霉
P. infestans
腐皮镰孢霉菌
Fusarium solani
枯草芽孢杆菌
Bacillus subtilis
赖氏菌属
Leifsoniasp.
类芽孢杆菌属
Paenibacillussp.
副球菌属
Paracoccussp.
大理Dali 61 7 13 3 11 13
丽江Lijiang 18 0 10 0 1 5
昆明Kunming 33 5 18 7 5 10
[1] Fry W E . Phytophthora infestans:the plant (and R gene) destroyer. Molecular Plant Pathology, 2008,9(3):385-402.
doi: 10.1111/j.1364-3703.2007.00465.x pmid: 18705878
[2] Fry W E, Birch P R J, Judelson H S ,et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology, 2015,105(7):966-981.
doi: 10.1094/PHYTO-01-15-0005-FI pmid: 25760519
[3] Yuen J E, Andersson B . What is the evidence for sexual reproduction of Phytophthora infestans in Europe?. Plant Pathology, 2013,62(3):485-491.
doi: 10.1111/j.1365-3059.2012.02685.x
[4] Dennisa J, Thomas F C . Latent infection of potato seed tubers by Phytophthora infestans during long-term cold storage. Plant Disease, 2009,93(9):940-946.
doi: 10.1094/PDIS-93-9-0940 pmid: 30754539
[5] Small I M, Joseph L, Fry W E . Development and implementation of the BlightPro decision support system for potato and tomato late blight management. Computers and Electronics in Agriculture, 2015,115:57-65.
doi: 10.1016/j.compag.2015.05.010
[6] Fall M L, Tremblay D M, Gobeil-Richard M , et al. Infection efficiency of four Phytophthora infestans clonal lineages and DNA-based quantification of sporangia. PLoS ONE, 2015,10(8):e0136312.
doi: 10.1371/journal.pone.0136312 pmid: 26301826
[7] Trout C L, Ristaino J B, Madritch M , et al. Rapid detection of Phytophthora infestans in late blight-infected potato and tomato using PCR. Plant Disease, 1997,81(9):1042-1048.
doi: 10.1094/PDIS.1997.81.9.1042 pmid: 30861957
[8] Ristaino J B, Madritch M, Trout C L , et al. PCR amplification of ribosomal DNA for species identification in the plant pathogen genus Phytophthora. Applied and Environmental Microbiology, 1998,64(3):948-954.
pmid: 9501434
[9] Kong P, Hong C X, Richardson P A , et al. Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genetics and Biology, 2003,39(3):238-249.
doi: 10.1016/S1087-1845(03)00052-5
[10] Tooley P W, Bunyard B A, Carras M M , et al. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Applied and Environmental Microbiology, 1997,63(4):1467-1475.
pmid: 9097445
[11] Hussain T, Sharma S, Singh B P , et al. Detection of latent infection of Phytophthora infestans in potato seed tubers. Potato Journal, 2013,40(2):142-148.
doi: 10.1007/BF02849142
[12] Judelson H S, Tooley P W . Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology, 2000,90(10):1112-1119.
doi: 10.1094/PHYTO.2000.90.10.1112 pmid: 18944474
[13] Gómez-Alpizar L, Carbone I, Ristaino J B . An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(9):3306-3311.
[14] Llorente B, Bravoalmonacid F, Cvitanich C , et al. A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Letters in Applied Microbiology, 2010,51(6):603-610.
doi: 10.1111/j.1472-765X.2010.02942.x pmid: 21039667
[15] Mehran K, Benjin L, Yue J , et al. Evaluation of different PCR-based assays and LAMP method for rapid detection of Phytophthora infestans by targeting the Ypt1 gene. Frontiers in Microbiology, 2017,8:1920.
doi: 10.3389/fmicb.2017.01920 pmid: 29051751
[16] Hussain S, Lees A K, Duncan J M , et al. Development of a species-specific and sensitive detection assay for Phytophthora infestans and its application for monitoring of inoculum in tubers and soil. Plant Pathology, 2005,54(3):373-382.
doi: 10.1111/ppa.2005.54.issue-3
[17] Ammour M S, Bilodeau G J, Tremblay D M , et al. Development of real-time isothermal amplification assays for on-site detection of Phytophthora infestans in potato leaves. Plant Disease, 2017,101(7):1269-1277.
doi: 10.1094/PDIS-12-16-1780-RE pmid: 30682973
[18] Notomi T, Okayama H, Masubuchi H , et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000,28(12):e63.
doi: 10.1093/nar/28.12.e63 pmid: 10871386
[19] Nagamine K, Watanabe K, Ohtsuka K , et al. Loop-mediated isothermal amplification reaction using a nondenatured template. Clinical Chemistry, 2001,47(9):1742-1743.
pmid: 11514425
[20] Martin F N, Abad Z G, Balci Y , et al. Identification and detection of Phytophthora:reviewing our progress,identifying our needs. Plant Disease, 2012,96(8):1080-1103.
doi: 10.1094/PDIS-12-11-1036-FE pmid: 30727075
[21] Tomlinson J A, Barker I, Boonham N . Faster,simpler,more-specific methods for improved molecular detection of Phytophthora ramorum in the field. Applied and Environmental Microbiology, 2007,73(12):4040-4047.
doi: 10.1128/AEM.00161-07 pmid: 17449689
[22] Hansen Z R, Knaus B J, Tabima J F , et al. Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen,Phytophthora infestans. Journal of Applied Microbiology, 2016,120(4):1010-1020.
doi: 10.1111/jam.13079 pmid: 26820117
[23] Chen Y, Roxby R . Characterization of a Phytophthora infestans gene involved in vesicle transport. Gene, 1996,181(1/2):89-94.
doi: 10.1016/s0378-1119(96)00469-6 pmid: 8973313
[24] Caten C E, Jinks J L . Spontaneous variability of single isolates of Phytophthora infestans. I. cultural variation. Canadian Journal of Botany, 1968,46:329-348.
doi: 10.1139/b68-055
[25] Álvarez I, Wendel J F . Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 2003,29(3):417-434.
doi: 10.1016/s1055-7903(03)00208-2 pmid: 14615184
[26] Lane D J . Nucleic acid techniques in bacterial systematics. New York:John Wiley and Sons, 1991.
doi: 10.3760/cma.j.issn.0253-9624.2019.11.011 pmid: 31683400
[27] 魏景超 . 真菌鉴定手册. 上海: 上海科学技术出版社, 1979.
[28] Boone D R, Castenholz R W . Bergey′s manual of systematic bacteriology. New York:Springer, 2001.
[29] Kroon L P, Brouwer H, de Cock A W ,et al. The genus Phytophthora anno 2012. Phytopathology, 2012,102(4):348.
doi: 10.1094/PHYTO-01-11-0025
[30] Blancomeneses M, Ristaino J B . Detection and quantification of Peronospora tabacina using a real-time polymerase chain reaction assay. Plant Disease, 2011,95(6):673-682.
doi: 10.1094/PDIS-05-10-0333
[31] Diguta C F, Rousseaux S, Weidmann S , et al. Development of a qPCR assay for specific quantification of Botrytis cinereal on grapes. Fems Microbiology Letters, 2010,313(1):81-87.
doi: 10.1111/j.1574-6968.2010.02127.x pmid: 20946385
[32] Spring O, Marco T, Wolf S , et al. PCR-based detection of sunflower white blister rust (Pustula helianthicola C. Rost and Thines) in soil samples and asymptomatic host tissue. Netherlands Journal of Plant Pathology, 2011,131(3):519-527.
[33] Eshraghi L, Anderson J, Aryamanesh N , et al. Phosphite primed defence responses and enhanced expression of defence genes in Arabidopsis thaliana infected with Phytophthora cinnamomic. Plant Pathology, 2011,60(6):1086-1095.
doi: 10.1111/j.1365-3059.2011.02471.x
[34] Lees A K, Sullivan L, Lynott J S , et al. Development of a quantitative real-time PCR assay for Phytophthora infestans and its applicability to leaf,tuber and soil samples. Plant Pathology, 2012,61(5):867-876.
doi: 10.1111/j.1365-3059.2011.02574.x
[1] Zhou Yili,Zhang Yaling,Zhao Hongsen,Jin Xuehui. Molecular Detection and Analysis of Rice Blast Resistance Genes in Main Rice Varieties in Heilongjiang Province [J]. Crops, 2019, 35(3): 172-177.
[2] Huiyao Tian,Jizhi Jiang,Chengbin Li,Fen Shen,Ning Hou. Genetic Diversity of Phytophthora infestans in Northeast China [J]. Crops, 2018, 34(3): 168-173.
[3] Youyou Wang,Jizhi Jiang,Huiyao Tian,Ming Li,Xuening Wang,Yanqing Wu,Han Sun. Preliminary Study on the Signal Molecule of Phytophthora infestans Responsed by Antagonistic Actinomycetes Strain Sy11 [J]. Crops, 2017, 33(4): 150-154.
[4] Jizhi Jiang,Youyou Wang,Xuening Wang,Liyan Li,Anqi Wan,Ming Li. Identification of SR13-2 Strain against Phytophthora infestans and Control of Late Blight on Detached Potato Tissues [J]. Crops, 2017, 33(3): 146-150.
[5] Yanli Lu,Hongyou Zhou,Xiaoyu Zhang. Optimization of Virus-Free of Shoot Tip and Virus Detection of Test-Tube Plantlet of Potato [J]. Crops, 2017, 33(1): 161-167.
[6] Beibei Wang,Jizhi Jiang,Ying Li,Anqi Wan,Chunshuang Gui,Yingju Huang,Zhihui Yang,Jiehua Zhu. Comparison of Isolation Efficiency of Phytophthora infestans with Two Antibiotics Formulas [J]. Crops, 2016, 32(5): 160-166.
[7] Yahui Zhang,Jizhi Jiang,Beibei Wang,Ying Li,Anqi Wan,Haitian Sha. Comparison of Three Antagonistic Bacteria against Phytophthora infestans in Potato [J]. Crops, 2016, 32(4): 162-166.
[8] Cui Guo,Wei Zhang,Guirong Yu,Zhengfu Zhou,Liang Li,Shuai Feng,Ming Chen,Jin Wang. Analysis of the Flanking Sequence and Event-Specific Detection of Transgenic G2-EPSPS Line of Maize [J]. Crops, 2016, 32(1): 69-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .