Crops ›› 2020, Vol. 36 ›› Issue (2): 34-40.doi: 10.16035/j.issn.1001-7283.2020.02.006

Previous Articles     Next Articles

Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region

Liu Haidong,Yu Qinglan,Wang Ruisheng(),Du Dezhi()   

  1. Academy of Agricultural and Forestry Sciences, Qinghai University/Key Laboratory of Qinghai Province for Spring Rapeseed Genetic Improvement/The Qinghai Research Branch of the National Rapeseed Genetic Improvement Center/Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Affairs, Qinghai Spring Rape Engineering Research Center, Xining 810016, Qinghai, China
  • Received:2019-08-16 Revised:2019-11-25 Online:2020-04-15 Published:2020-04-13
  • Contact: Ruisheng Wang,Dezhi Du E-mail:qaafwrs@163.com;qhurape@126.com

Abstract:

Flea beetle is a serious pest during the seedling stage of the oilseed rape. In this study, 42 rapeseed varieties (lines) were used as materials to explore the resistance to flea beetle and to select resistant resources. We identified the natural hazard index and the activities of four main defensive enzymes including phenylalanine ammonialyase (PAL), polyphenol oxidase (PPO), peroxidase (POD) and superoxide dismutase (SOD). The results of two years field experiments showed that Dalajie and Bajie (B. juncea) and Qingza 12 and Qingza 2 (B. napus) had low hazard index. Defence enzyme activities results also elucidated that the Qingza 12, Dalajie and Baijie had high activities of PAL, PPO, POD and SOD. Comprehensively these two results, it exhibited that Qingza 12, Dalajie and Bajie had the strongest resistance to the flea beetle damage and could be used as resistant resources.

Key words: Spring rapeseed region, Flea beetle, Rapeseed variety, Resource screening

Table 1

Ecotypes and sources of different rapeseed varieties (lines)"

品种(系)
Variety (Line)
来源
Source
类型
Type
生态类型
Ecotype type
品种(系)
Variety (Line)
来源
Source
类型
Type
生态类型
Ecotype type
青油14 Qingyou 14 中国青海 甘蓝型 春性 ZG2017Y 中国青海 甘蓝型 春性
46 中国青海 甘蓝型 春性 33R 中国青海 甘蓝型 春性
青杂5号Qingza 5 中国青海 甘蓝型 春性 中双7号Zhongshuang 7 中国湖北 甘蓝型 半冬性
青杂6号Qingza 6 中国青海 甘蓝型 春性 中双9号Zhongshuang 9 中国湖北 甘蓝型 半冬性
青杂2号Qingza 2 中国青海 甘蓝型 春性 中双11号Zhongshuang 11 中国湖北 甘蓝型 半冬性
青杂7号Qingza 7 中国青海 甘蓝型 春性 中油821 Zhongyou 821 中国湖北 甘蓝型 半冬性
1244R 中国青海 甘蓝型 春性 AG-5 加拿大 甘蓝型 春性
144A 中国青海 甘蓝型 春性 QU 加拿大 甘蓝型 春性
青杂9号Qingza 9 中国青海 甘蓝型 春性 AG-21 加拿大 甘蓝型 春性
青杂11号Qingza 11 中国青海 甘蓝型 春性 浩油11号Haoyou 11 中国青海 白菜型 春性
青杂12号Qingza 12 中国青海 甘蓝型 春性 青油241 Qingyou 241 中国青海 白菜型 春性
杜4695 Du 4695 中国青海 甘蓝型 春性 青油9号Qingyou 9 中国青海 白菜型 春性
105A 中国青海 甘蓝型 春性 大黄Dahuang 中国青海 白菜型 春性
ZG842 中国青海 甘蓝型 春性 青油21号Qingyou 21 中国青海 白菜型 春性
403R 中国青海 甘蓝型 春性 2017ZZY 中国青海 白菜型 春性
杜4380 Du 4380 中国青海 甘蓝型 春性 严小村芥Yanxiaocunjie 中国青海 芥菜型 春性
1186R 中国青海 甘蓝型 春性 白芥Baijie 中国青海 芥菜型 春性
ZG852 中国青海 甘蓝型 春性 大辣芥Dalajie 中国青海 芥菜型 春性
1831R 中国青海 甘蓝型 春性 YZ867 中国青海 芥菜型 春性
杜409 Du 409 中国青海 甘蓝型 春性 39 巴基斯坦 芥菜型 春性
青杂4号Qingza 4 中国青海 甘蓝型 春性 塔油2号Tayou 2 中国新疆 芥菜型 春性

Table 2

Analysis of the hazard index of jumping armor among different rapeseed varieties (lines) %"

品种(系)
Variety (Line)
2017 2018
青油14号
Qingyou 14
57.03±2.45abcABC 50.05±0.97bcdefABCDEF
46 56.81±2.45abcdABCD 51.82±2.65abcdABCD
青杂2号
Qingza 2
32.51±5.19opNOP 35.76±2.03ijklmHIJK
青杂4号
Qingza 4
39.63±5.13ijklmnopIJKLMNOP 40.88±2.82efghijklDEFGHIJ
青杂5号
Qingza 5
45.49±5.75ghijkFGHIJKLM 41.99±1.48defghijklBCDEFGHIJ
青杂6号
Qingza 6
42.90±3.14hijklmnHIJKLM 41.40±4.60defghijklCDEFGHIJ
青杂7号
Qingza 7
59.29±2.60abAB 50.79±1.12abcdeABCDE
青杂9号
Qingza 9
49.13±3.75cdefghCDEFGHI 46.63±5.41bcdefghBCDEFGH
青杂11号
Qingza 11
43.39±1.51hijklmnGHIJKLM 44.89±1.11bcdefghijBCDEFGHIJ
青杂12号
Qingza 12
31.65±2.48opP 33.65±4.07lmJK
1831R 38.51±2.57jklmnopJKLMNOP 39.01±1.22ghijklEFGHIJ
105A 47.92±2.67efghiCDEFGHIJK 44.17±3.10bcdefghijkBCDEFGHIJ
1244R 36.44±2.55mnopLMNOP 39.69±2.09fghijklEFGHIJ
144A 65.06±5.60aA 61.06±4.52aA
`AG-5 42.80±3.17hijklmnHIJKLM 41.31±5.30defghijklDEFGHIJ
AG-21 36.61±4.36lmnopLMNOP 38.11±2.0hijklFGHIJ
QU 46.04±3.13ghijkFGHIJKL 43.79±3.34bcdefghijklBCDEFGHIJ
杜4695
Du 4695
41.63±3.18hijklmnIJKLMNO 37.62±1.67hijklGHIJ
杜409 Du 409 46.60±2.16fghijkEFGHIJK 41.35±1.11defghijklCDEFGHIJ
杜4380
Du 4380
40.46±1.63hijklmnoIJKLMNOP 39.46±0.96fghijklEFGHIJ
403R 32.24±1.49opOP 38.24±0.4hijklFGHIJ
1186R 48.12±2.72defghiCDEFGHIJ 46.37±2.84bcdefghiBCDEFGH
33R 45.65±3.37ghijkFGHIJKL
44.88±2.66bcdefghijBCDEFGHIJ
ZG842 44.31±2.99ghijklmnGHIJKLM 43.06±1.24cdefghijklBCDEFGHIJ
ZG852 45.40±4.02ghijklGHIJKLM 43.40±2.28bcdefghijklBCDEFGHIJ
ZG2017Y 32.44±4.49opNOP 35.45±3.14jklmHIJK
青油241
Qingyou 241
42.83±1.00hijklmnHIJKLMN 42.33±0.79cdefghijklBCDEFGHIJ
中双7号
Zhongshuang 7
47.17±2.53fghijDEFGHIJK 45.92±4.48bcdefghijBCDEFGHI
中双9号
Zhongshuang 9
44.36±3.45ghijklmnGHIJKLM 44.86±3.03bcdefghijBCDEFGHIJ
中双11号
Zhongshuang 11
43.29±1.51hijklmnGHIJKLM 44.67±4.35bcdefghijkBCDEFGHIJ
中油821
Zhongyou 821
38.20±3.31klmnopKLMNOP 38.70±2.67hijklEFGHIJ
浩油11号
Haoyou 11
45.00±1.97ghijklmGHIJKLM 43.75±1.08bcdefghijklBCDEFGHIJ
青油9号
Qingyou 9
43.07±3.25hijklmnGHIJKLM 44.07±1.61bcdefghijklBCDEFGHIJ
大黄Dahuang 52.42±2.05bcdefgBCDEFGH 49.67±2.51bcdefgABCDEFG
青油21号
Qingyou 21
46.20±1.33ghijkEFGHIJKL 44.95±1.96bcdefghijBCDEFGHIJ
2017ZZY 42.26±2.05hijklmnIJKLMN 40.26±3.50efghijklDEFGHIJ
严小村芥
Yanxiaocunjie
35.64±3.71nopMNOP 38.64±2.96hijklFGHIJ
白芥Baijie 31.15±1.48pP 34.01±2.99klmIJK
大辣芥Dalajie 31.00±1.69pP 25.05±16.62mK
YZ867 52.91±2.80bcdefgBCDEFG 53.05±2.04abcABC
39 56.02±2.90bcdeABCDE 54.02±1.68abAB
塔油2号
Tayou 2
55.30±1.62bcdefABCDEF 49.66±3.40bcdefgABCDEFG

Fig.1

Chi-square distance clustering for the hazard index of different rapeseed varieties (lines) in 2018"

Fig.2

The results of four defense enzyme activities in different rapeseed varieties (lines) at seedling stage in 2018 "*" and "**" indicate enzyme activity are significant higher than Qingza 5 at 0.05 and 0.01 probability level, respectively"

Table 3

Correlation coefficient between hazard index and the activities of four defense enzymes in 2018"

相关系数Correlation coefficient (R) 为害指数Hazard index PAL活性PAL activity PPO活性PPO activity POD活性POD activity
为害指数Hazard index
PAL活性PAL activity -0.79**
PPO活性PPO activity -0.78** 0.73**
POD活性POD activity -0.87** 0.78** 0.90**
SOD活性SOD activity -0.79** 0.75** 0.84** 0.87**
[1] 刘成, 黄杰, 冷博峰 , 等. 我国油菜产业现状、发展困境及建议. 中国农业大学学报, 2017,22(12):203-210.
[2] 杜德志, 肖麓, 赵志 , 等. 我国春油菜遗传育种研究进展. 中国油料作物学报, 2018,40(5):29-35.
[3] Amosova A V, Zemtsova L V, Yurkevich O Y , et al. Genomic changes in generations of synthetic rapeseed-like allopolyploid grown under selection. Euphytica, 2017,213(9):217.
[4] Batra N, Kaur K, Kaur H , et al. Status of defensive enzymes and contents of total phenols,tannins and nutrients determine aphid resistance in barley. Proceedings of the National Academy of Sciences,India-Section B:Biological Sciences, 2017,88(4):1-8.
[5] 郑果, 韩宏, 白云飞 , 等. 春油菜拌种对菌核病和跳甲的防效. 西北农业学报, 2019,28(5):802-808.
[6] 林小军, 崔灿, 龚利萍 , 等. 南方6种蔬菜害虫发生规律及绿色防控措施. 安徽农业科学, 2019,47(9):138-140.
[7] 王丽慧 . 春油菜苗期主要害虫的防治及农药残留研究. 兰州:甘肃农业大学, 2017.
[8] 张茂新, 凌冰, 梁广文 . 十字花科蔬菜上黄曲条跳甲种群动态调查与分析. 植物保护, 2000,26(4):1-3.
[9] 任少鹏, 汪峰, 裘辰光 , 等. 黄曲条跳甲绿色防控研究进展. 宁波农业科技, 2018(4):12-15.
[10] 袁水霞, 张佳佳 . 黄曲条跳甲的生物学特性及防治技术. 河南农业, 2016(9):49-50.
[11] 何越超, 陈江, 史梦竹 , 等. 3种植物提取物对黄曲条跳甲忌避作用的研究// 中国植物保护学会论文集, 2016.
[12] 魏洪义, 王国汉 . 斯氏线虫对黄曲条跳甲田间种群的控制作用. 植物保护学报, 1993,20(1):61-64.
[13] 刘芸, 侯有明 . 黄曲条跳甲种群的生态控制技术// 福建省科协青年学术年会论文集, 2004.
[14] 冯建雄, 董晓亮, 杨博慧 , 等. 油菜叶片营养物质含量和防御酶活性与其对黄宽条跳甲抗性的关系. 植物保护, 2019,45(3):49-54.
[15] 于威, 郝天龙 . 几种防御性酶在植物抗病方面的研究进展. 北京农业, 2014(36):133.
[16] 钦俊德 . 植物与昆虫的相互关系:论昆虫与植物的相互作用及其演化. 北京:科学出版社, 1987: 38-61.
[17] Han Y, Wang Y, Bi J L , et al. Constitutive and induced activities of defense-related enzymes in aphid-resistant and aphid-susceptible cultivars of wheat. Journal of Chemical Ecology, 2009,35(2):176-182.
[18] 安玉兴, 许汉亮, 孙东磊 , 等. 茉莉酸甲酯诱导甘蔗抗虫性中多酚氧化酶(PPO)活性分析. 甘蔗糖业, 2011(6):18-21.
[19] 张金锋, 薛庆中 . 稻飞虱胁迫对水稻植株内主要保护酶活性的影响. 中国农业科学, 2004,37(10):1487-1491.
[20] 宋培玲, 张键, 郝丽芬 , 等. 不同抗性油菜品种接种黑胫病菌防御酶活性变化研究. 华北农学报, 2015,30(2):110-115.
[21] Chaman M E, Copaja S V, Argandona V H . Relationships between salicylic acid content,phenylalanine ammonia-lyase (PAL) activity,and resistance of barley to aphid infestation. Journal of Agricultural and Food Chemistry, 2003,51(8):2227-2231.
[22] 贺春贵, 潘峰, 王国利 , 等. 油菜蚤跳甲的为害分级及习性. 甘肃农业大学学报, 2000,35(4):377-379.
[23] 高泽正, 吴伟坚, 崔志新 . 关于黄曲条跳甲的寄主范围. 生态科学, 2000,19(2):70-72.
[24] 周福锁 . 植物营养的生态生理学和遗传学. 北京:中国科学技术出版社, 1993: 181-182.
[25] Mishra A K, Morang P, Deka M , et al. Plant growth-promoting rhizobacterial strain-mediated induced systemic resistance in tea (Camellia sinensis (L.) O. Kuntze) through defense-related enzymes against brown root rot and charcoal stump rot. Applied Biochemistry and Biotechnology, 2014,174(2):506-521.
[26] 张丽, 常金华, 罗耀武 . 不同高粱基因型感蚜虫前后POD、PPO、PAL酶活性变化分析. 中国农学通报, 2005(7):40-42.
[27] 李润植, 毛雪, 李彩霞 , 等. 棉花诱导抗蚜性与次生代谢相关酶活性的关系. 山西农业大学学报, 1998,18(2):165-168.
[28] 余青兰, 赵志刚, 徐亮 . 高寒春油菜区抗跳甲春油菜品种资源筛选试验. 安徽农业科学, 2012,40(21):11103-11104.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .