Crops ›› 2020, Vol. 36 ›› Issue (2): 41-47.doi: 10.16035/j.issn.1001-7283.2020.02.007

Previous Articles     Next Articles

Ecological Stoichiometric Characteristics of Carbon, Nitrogen and Phosphorus in Leaves and Stems of Different Types of Sweet Potato

Guo Qilin,Wu Haiyun,Li Huan,Liu Qing()   

  1. College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, Shandong, China
  • Received:2019-08-17 Revised:2019-09-10 Online:2020-04-15 Published:2020-04-13
  • Contact: Qing Liu E-mail:qy7271@163.com

Abstract:

Total of 9 sweet potato varieties were selected and were divided into 3 types i.e. fresh sweet potato, starch sweet potato, and purple sweet potato. The contents of carbon (C), nitrogen (N) and phosphorus (P) in the shoots and leaves were measured at different growth periods, to study the C, N, P ecological stoichiometric characteristics of different types of sweet potatoes and their changes with the growth period. The results showed that the content ranges of C, N, and P were 391-399, 26.3-29.1, 2.90-3.10mg/g in leaves, and 421-428, 11.6-15.2, and 4.99-5.77mg/g in stems, respectively. The differences in stems and leaves are greater than those in sweet potato types; the C content in the stems increases slightly with the growth period, but the content of other elements in the stems and leaves decreases with the growth period. The change of C, N and P contents in stems with growth period is greater than that among varieties. Purple sweet potato and starch sweet potato had the highest C/N and C/P respectively in leaves of different sweet potato varieties, which indicated that they had high C assimilation ability. The N/P values in three types of sweet potato leaves ranged from 8.57 to 9.97 which indicated that N was the main limiting factor of growth in sweet potato.

Key words: Sweet potato, Ecological stoichiometry, Stem and leaf, Growth period

Table 1

The average contents of C, N, P and C/N, C/P, N/P in stems and leaves of different types of sweet potato"

器官
Organ
甘薯类型
Sweet potato type
含量(mg/g)
Content
变异系数(%)
Coefficient of variation
计量比
Stoichiometric ratio
C N P C N P C/N C/P N/P

Leaf
紫甘薯
Purple sweet potato
396±6.16b 26.3±2.81a 3.07±0.66b 1.56 10.68 21.50 15.1±1.39c 128.9±7.95a 8.57±1.06a
淀粉型甘薯
Starch sweet potato
391±9.57b 28.9±3.43a 2.90±0.39b 2.45 11.87 13.45 13.5±1.41c 134.8±6.47a 9.97±0.78a
鲜食型甘薯
Fresh sweet potato
399±9.10b 29.1±5.61a 3.10±0.45b 2.28 19.28 14.52 13.7±2.32c 128.7±8.12a 9.39±0.79a

Stem
紫甘薯
Purple sweet potato
421±7.35a 11.6±2.88b 5.37±1.56a 1.75 24.83 29.05 36.3±6.44a 78.4±6.66b 2.16±0.37b
淀粉型甘薯
Starch sweet potato
423±2.87a 15.2±3.37b 5.77±1.22a 0.68 22.17 21.14 27.8±4.91b 78.3±6.56b 2.63±0.37b
鲜食型甘薯
Fresh sweet potato
428±5.16a 13.9±7.04b 4.99±0.97a 1.21 50.65 19.44 30.8±5.74ab 85.8±5.48b 2.79±0.87b

Fig.1

Contents of C, N and P in stems and leaves of sweet potato in different growth periods"

Fig.2

C/N, C/P and N/P in stems and leaves of sweet potato in different growth periods"

Table 2

Source of variation of C, N, P stoichiometry in sweet potato leaves"

参数Parameter 变异来源Source of variation 离差平方和SS 自由度df 均方Mean square deviation F
C 生育时期Growth period (G) 380.9221 2 190.4610 2.0740
甘薯类型Sweet potato type (T) 206.4010 2 103.2005 1.1240
生育时期×甘薯类型G×T 151.7279 4 37.9320 0.4130
误差Error 1 653.1071 18 91.8393
总变异Total variation 2 392.1580 26
N 生育时期Growth period (G) 267.6165 2 133.8083 9.8530*
甘薯类型Sweet potato type (T) 42.6645 2 21.3322 1.5710
生育时期×甘薯类型G×T 39.3852 4 9.8463 0.7250
误差Error 244.4419 18 13.5801
总变异Total variation 594.1081 26
P 生育时期Growth period (G) 4.1286 2 2.0643 7.4240*
甘薯类型Sweet potato type (T) 0.2214 2 0.1107 0.3980
生育时期×甘薯类型G×T 0.6466 4 0.1616 0.5810
误差Error 5.0049 18 0.2781
总变异Total variation 10.0014 26
C/N 生育时期Growth period (G) 50.9970 2 25.4985 8.8660*
甘薯类型Sweet potato type (T) 12.8540 2 6.4270 2.2350
生育时期×甘薯类型G×T 5.0039 4 1.2510 0.4350
误差Error 51.7673 18 2.8760
总变异Total variation 120.6223 26
C/P 生育时期Growth period (G) 7 276.8861 2 3 638.4430 6.4340*
甘薯类型Sweet potato type (T) 318.4184 2 159.2092 0.2820
生育时期×甘薯类型G×T 1 008.7535 4 252.1884 0.4460
误差Error 10 179.3593 18 565.5200
总变异Total variation 18 783.4173 26
N/P 生育时期Growth period (G) 0.9085 2 0.4543 0.1310
甘薯类型Sweet potato type (T) 8.7679 2 4.3839 1.2630
生育时期×甘薯类型G×T 9.7828 4 2.4457 0.7050
误差Error 62.4812 18 3.4712
总变异Total variation 81.9404 26
[1] 牛得草, 李茜, 江世高 , 等. 阿拉善荒漠区6种主要灌木植物叶片C、N、P化学计量比的季节变化. 植物生态学报, 2013,37(4):317-325.
[2] 李征, 韩琳, 刘玉虹 , 等. 滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征. 植物生态学报, 2012,36(10):1054-1061.
[3] González-Alcaraz M N, Egea C, Jiménez-Cárceles F J , et al. Storage of organic carbon, nitrogen and phosphorus in the soil-plant system of Phragmites australis stands from a eutrophicated mediterranean salt marsh. Geoderma, 2012,185/186:61-72.
[4] Elser J J, Bracken M E, Cleand E E , et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater,marine and terrestrial ecosystems. Ecology Letters, 2007,10(12), 1135-1142.
[5] 曾冬萍, 蒋利玲, 曾从盛 , 等. 生态化学计量学特征及其应用研究进展. 生态学报, 2013,33(18):5484-5492.
[6] 姚红艳, 陈琴, 肖冰雪 . 植物生态化学计量学综述. 草业与畜牧, 2013(2):48-50.
[7] Güsewell S . N: P ratios in terrestrial plants: variation and functional significance. New Phytologist, 2004,164(2):243-266.
[8] 曾德慧, 陈广生 . 生态化学计量学:复杂生命系统奥秘的探索. 植物生态学报, 2005,29(6):141-153.
[9] 赵航, 贾彦龙, 王秋凤 . 中国地带性森林和农田生态系统C-N-P化学计量统计特征. 第四纪研究, 2014,34(4):803-814.
[10] Zhang C, Liu G, Xue S , et al. Rhizosphere soil microbial properties on abandoned croplands in the Loess Plateau,China during vegetation succession. European Journal of Soil Biology, 2012,50:127-136.
[11] 张赛, 王龙昌 . 全球变化背景下农田生态系统碳循环研究. 农机化研究, 2013,35(1):4-9.
[12] 张福锁, 王激清, 张卫峰 , 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008,45(5):915-924.
[13] 贺金生, 韩兴国 . 生态化学计量学:探索从个体到生态系统的统一化理论. 植物生态学报, 2010,34(1):2-6.
[14] 刘珮, 马慧, 智颖飙 , 等. 9种典型荒漠植物生态化学计量学特征分析. 干旱区研究, 2018,35(1):207-216.
[15] 王绍强, 于贵瑞 . 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008,28(8):3937-3947.
[16] 郭冬艳 . 退化草地的生态化学计量学研究. 长春:吉林大学, 2013.
[17] 张仁懿, 史小明, 李文金 , 等. 亚高寒草甸物种内稳性与生物量变化模式. 草业科学, 2015,32(10):1539-1547.
[18] Elser J J, Dobberfuhl D R, Mackay N A , et al. Organism size,life history,and N:P stoichiometry. Bioscience, 1996,46(9):674-684.
[19] Elser J J, Acharya K, Kyle M , et al. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters, 2010,6(10):936-943.
[20] Ågren G I . Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology,Evolution,and Systematics, 2008,39:153-170.
[21] Qiang Y, Chen Q S, Elser J J , et al. Linking stoichiometric homoeostasis with ecosystem structure,functioning and stability. Ecology Letters, 2010,13(11):1390-1398.
[22] 江苏省农业科学院, 山东省农业科学院主编. 中国甘薯栽培学(12版). 上海:上海科学技术出版社, 1984.
[23] 罗艳 . 塔里木盆地北缘绿洲农田生态系统生态化学计量特征. 乌鲁木齐:新疆大学, 2017.
[24] 谢锦, 常顺利, 张毓涛 , 等. 天山北坡植物土壤生态化学计量特征的垂直地带性. 生态学报, 2016,36(14):4363-4372.
[25] 刘万德, 苏建荣, 李帅锋 , 等. 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 2015,39(1):52-62.
[26] 赵亚芳, 徐福利, 王渭玲 , 等. 华北落叶松针叶碳、氮、磷含量及化学计量比的季节变化. 植物营养与肥料学报, 2015,21(5):1328-1335.
[27] 刘超, 王洋, 王楠 , 等. 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 2012,36(11):1205-1216.
[28] 吴统贵, 吴明, 刘丽 , 等. 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 2010,34(1):23-28.
[29] 杨梅, 王昌全, 袁大刚 , 等. 不同生长期烤烟各器官C、N、P生态化学计量学特征. 中国生态农业学报, 2015,23(6):686-693.
[30] 李红林, 贡璐, 洪毅 . 克里雅绿洲旱生芦苇根茎叶C、N、P化学计量特征的季节变化. 生态学报, 2016,36(20):6547-6555.
[31] Ågren G I . The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2004,7:185-191.
[32] Koerselman W . The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996,33(6):1441-1450.
[33] Tessier J T, Raynal D . Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 2003,40:523-534.
[1] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato [J]. Crops, 2019, 35(5): 114-119.
[2] Dong Zhiqiang,Wang Mengmeng,Li Hongyi,Xue Xiaoping,Pan Zhihua,Hou Yingyu,Chen Chen,Li Nan,Li Manhua. Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province [J]. Crops, 2019, 35(5): 159-165.
[3] Quan Baoquan,Lü Ruizhou,Wang Guijiang,Ren Jiecheng. Effects of Different Cultivation Measures during Vegetative Propagation on Growth and Yield of Sweet Potato [J]. Crops, 2019, 35(3): 158-161.
[4] Yajun Liu,Fengli Chu,Wenjing Wang,Qiguo Hu,Aimei Yang. Effects of Different Supporting Cultivation Measures on the Yield and Weeds Control of Sweet Potato cv. Shangshu 9 [J]. Crops, 2019, 35(2): 179-184.
[5] Xiaolan Jing,Zhihua Li,Xun Dong. Effects of Different Sowing Dates on Growth and Yield of Different Millet Varieties [J]. Crops, 2019, 35(1): 146-151.
[6] Zhang Jianhua,Guo Ruifeng,Cao Changlin,Fan Na,Jiang Baiyang,Li Guang,Shi Lijuan,Peng Zhidong,Bai Wenbin. Study on Effect and Safety of Controlling Weed in Sorghum Field by Several Stem and Leaf Treatment Herbicide [J]. Crops, 2018, 34(5): 162-166.
[7] Yajun Liu,Qiguo Hu,Fengli Chu,Wenjing Wang,Aimei Yang. Effects of Different Cultivation Methods and Planting Densities on the Yield and Storage Root Tuberization of Sweet Potato cv. "Shangshu 9" [J]. Crops, 2018, 34(4): 89-94.
[8] Mingming Yan,Qiujun Chen,Min Tang,Zhiwen Liu. Effects of Different Concentration Combinations of Hormone and Organics on Rapid Propagation of Sweet Potato Virus-Free Seedling [J]. Crops, 2018, 34(2): 68-72.
[9] Qian Liu,Song Hou,Qing Liu,Huan Li,Yanxi Shi. Effects of Transplanting Date on Yield and Quality of Edible Sweet Potato cv. Yanshu No.25 [J]. Crops, 2017, 33(5): 136-141.
[10] Zheng Yan,Xiaohong Zhang,Zhengrong Wang. Application of Grey Multidimensional Relation Analysis in Evaluation of Purple Sweet Potato Varieties [J]. Crops, 2017, 33(4): 58-62.
[11] Genhui Chen,Qimao Guo,Zilong Lin,Yanxia Huang,Liming Yang. Effects of Different Application Rate of Potassium Fertilizer on the Yield and Agronomic Traits of Longshu 28 [J]. Crops, 2017, 33(3): 91-95.
[12] Qian Xu,Hua Li,Hongxia Zong,Fang Dan,Zumin Wang. Optimization of the Overwintering Planting Density, Germchit,Base Fertilizer and Transplanting Period for Leaf-Vegetable Sweet Potato Seedlings [J]. Crops, 2016, 32(6): 142-147.
[13] Kun Zhang,Weisheng Lü,Licheng Duan,Shuixiu Hu,Yongjun Zeng,Xiaohua Pan,Qinghua Shi. Effects of Mechanical Transplanting on Plant Growth and Growth Period in Late Rice [J]. Crops, 2016, 32(5): 112-118.
[14] Weimin Chen,Jun Jing,Jiehua Wang,Fujie Ma,Yue Liang. Effects of Filming Plus Cryoprotectants for Preventing Sunflower White Rust,Black Stem Disease and Yield [J]. Crops, 2016, 32(3): 163-166.
[15] Jihong Zhou,Sishuai Mao,Junying Wang,Fanyu Meng,Caihua Ye,Chao Li. Temperature Evolution and Indicator of Wheat Growth Period in Beijing [J]. Crops, 2016, 32(3): 116-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .