Crops ›› 2020, Vol. 36 ›› Issue (3): 154-160.doi: 10.16035/j.issn.1001-7283.2020.03.024

Previous Articles     Next Articles

Effects of Planting Density on Wheat Yield Formation in Different Ecological Regions of Gansu Province

Chai Fangmei1, Gao Tiantian1, Chai Shouxi1(), Cheng Hongbo2, Song Yali3, Lu Qinglin4   

  1. 1Gansu Provincial Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3Qingyang Academy of Agricultural Sciences, Qingyang 745000, Gansu, China
    4Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2019-10-21 Revised:2020-02-18 Online:2020-06-15 Published:2020-06-10
  • Contact: Shouxi Chai E-mail:sxchai@126.com

Abstract:

In order to reveal the effect of different rate of sowing quantity treatment on wheat yield formation in three different ecological regions of Gansu Province, three varieties of Longzhong No.2, Lantian No.36 and Tongmai No.6 were used as materials in each region and five sowing quantity levels (150.0, 187.5, 225.0, 262.5, 300.0kg/ha in low-temperature semi-arid region and semi-humid region, and 112.5, 150.0, 187.5, 225.0, 262.5kg/ha in semi-arid region) were set up. The variation characteristics of wheat yield and yield compositions, planting density and yield difference in different regions were studied. The results showed that the suitable sowing quantity in low-temperature semi-arid region, semi-humid arid and semi-arid region were 187.5, 225.0, 225.0kg/ha, corresponding to the highest yield of 5 472.0, 5 730.0 and 7 271.4kg/ha respectively. With the increase of planting density, the yield of wheat and the number of spikes per unit area in each ecological region showed the trend of first increasing and then decreasing, the grain number per spike decreased, 1000-grain weight had no obvious change; change trend of basic seedling and tiller heading rate were similar to that of yield; aboveground biomass increased with the increasing of planting density, and there was significant difference among different planting densities in semi-humid arid region and semi-arid region. Under the same sowing quantity (150.0 and 225.0kg/ha), the yield of different regions varied greatly, with the highest average yield in the semi-arid region, followed by the semi-humid arid region, and the lowest in the low-temperature semi-arid region.

Key words: Gansu, Ecological region, Planting density, Wheat, Yield

Table 1

Precipitation in winter wheat growth in 2017-2018 mm"

气候类型区
Climate type region
播种-越冬期
Sowing-Wintering
越冬-返青期
Wintering-Reviving
返青-抽穗期
Reviving-Filling
抽穗-成熟期
Filling-Mature
合计
Total
低温半干旱区Low-temperature semi-arid region 33.0 13.3 71.9 32.8 151.0
半湿润易旱区Semi-humid arid region 43.6 13.5 77.8 30.1 165.0
半干旱区Semi-arid region 35.8 20.0 117.9 30.3 204.0

Table 2

Effects of plant density on yield and yield structure factors"

气候类型区
Climate type region
播种量
Plant density (kg/hm2)
产量
Yield (kg/hm2)
穗数
Spike number (×104/hm2)
穗粒数
Grain number per spike
千粒重
1000-grain weight (g)
低温半干旱区
Low-temperature
semi-arid region
150.0 5 054.5c 501.6c 25.4b 43.4a
187.5 5 472.0a 484.6d 27.9a 44.1a
225.0 5 379.5ab 546.4ab 23.9b 44.0a
262.5 5 226.5b 586.1a 24.3b 42.6a
300.0 5 252.0b 550.8ab 24.5b 42.7a
变异系数
Variation coefficient (%)
3.0 7.6 6.5 1.6
最大差异率
Maximum difference rate( %)
8.3 21.0 17.2 3.5
半湿润易旱区
Semi-humid arid region
150.0 5 280.0c 523.2c 29.2a 45.1b
187.5 5 490.0b 586.8ab 25.4c 46.7a
225.0 5 730.0a 606.0a 26.9b 46.9a
262.5 5 565.0ab 581.2ab 25.4c 45.0b
300.0 5 535.0ab 552.8b 28.8a 45.8a
变异系数
Variation coefficient (%)
2.9 5.7 6.6 2.0
最大差异率
Maximum difference rate (%)
8.5 15.8 15.0 4.2
半干旱区
Semi-arid region
112.5 6 821.6c 484.2c 34.4a 45.0a
150.0 7 006.5b 547.0b 31.6ab 44.2a
187.5 7 106.4b 538.9b 32.1ab 45.1a
225.0 7 271.4a 635.5a 28.3b 44.1a
262.5 7 146.4ab 610.5a 28.7b 44.6a
变异系数
Variation coefficient (%)
2.4 10.7 8.2 1.0
最大差异率
Maximum difference rate (%)
6.6 31.2 21.9 2.2

Table 3

Effects of plant density on wheat population structure"

气候类型区
Climate type region
播种量
Plant density
(kg/hm2)
基本苗
Basic seedling
(×104/hm2)
总茎数
The total number
of stem (×104/hm2)
分蘖成穗率
Tiller heading
rate (%)
地上部生物量
Aboveground
biomass (kg/hm2)
收获指数
Harvest
index
低温半干旱区
Low-temperature
semi-arid region
150.0 294e 517c 62.3a 9 319.8b 0.41a
187.5 361d 556b 40.3d 11 335.4b 0.41a
225.0 431c 578ab 46.2c 11 852.5ab 0.39b
262.5 503b 594a 53.1b 12 373.8a 0.39b
300.0 561a 603a 39.1d 12 683.7a 0.38b
变异系数
Variation coefficient (%)
24.9 6.0 20.0 11.6 3.5
最大差异率
Maximum difference rate (%)
77.5 16.5 59.4 36.1 6.3
半湿润易旱区
Semi-humid arid region
150.0 286e 603c 56.1a 13 442.0d 0.54a
187.5 366d 715b 47.4ab 16 653.0c 0.54a
225.0 436c 820a 42.2b 18 914.4b 0.56a
262.5 512b 854a 38.7b 22 323.2a 0.53a
300.0 573a 887a 31.5c 23 607.6a 0.53a
变异系数
Variation coefficient (%)
26.2 15.0 21.4 21.8 2.6
最大差异率
Maximum difference rate (%)
82.4 47.2 78.0 75.6 7.0
半干旱区
Semi-arid region
112.5 236e 498c 64.7a 12 226.6d 0.36a
150.0 315d 555bc 69.2a 15 340.5c 0.37a
187.5 385c 590ab 55.6b 17 055.5bc 0.47a
225.0 451b 624ab 50.0c 19 122.4b 0.43a
262.5 541a 649a 42.9d 22 192.3a 0.38a
变异系数
Variation coefficient (%)
29.5 10.2 19.0 21.9 11.6
最大差异率
Maximum difference rate (%)
116.5 30.2 61.5 81.5 31.1
[1] 姜丽娜, 刘佩, 齐冰玉 , 等. 不同施氮量及种植密度对小麦开花期氮素积累转运的影响. 中国生态农业学报, 2016,24(2):131-141.
[2] 胡焕焕, 刘丽平, 李瑞奇 , 等. 播种期和密度对冬小麦品种河农822产量形成的影响. 麦类作物学报, 2008,28(3):490-495,501.
doi: 10.7606/j.issn.1009-1041.2008.03.111
[3] 薛亚光, 魏亚凤, 李波 , 等. 播期和密度对宽幅带播小麦产量及其构成因素的影响. 农学学报, 2016,6(1):1-6.
[4] Dornbusch T, Baccar R, Watt J , et al. Plasticity of winter wheat modulated by sowing date,plant population density and nitrogen fertilisation:Dimensions and size of leafblades,sheaths and internodes in relation to their position ona stem. Field Crops Research, 2011,121(1):116-124.
doi: 10.1016/j.fcr.2010.12.004
[5] Whaley J M, Sparkes D L, Foulkes M J , et al. The physiological response of winter wheat to reductions in plant density. Annals of Applied Biology, 2000,137(2):165-177.
doi: 10.1111/aab.2000.137.issue-2
[6] 杨卫君, 贾永红, 石书兵 , 等. 播期和密度对春小麦品种新春26号生长及产量的影响. 麦类作物学报, 2016,36(7):913-918.
[7] 闫树平 . 不同品种冬小麦花前干物质积累转运及对产量的影响. 山东农业科学, 2016,48(10):65-68.
[8] 杨永光, 张维城, 吴玉娥 , 等. 播量对小麦产量和籽粒营养品质的影响. 河南职技师院学报, 1989(Z1):113-116.
[9] 潘雪娇, 黄振江, 陈慧 , 等. 滴灌条件下种植密度对新冬20生长及产量性状的影响. 安徽农业科学, 2017,45(30):32-35.
[10] 王文鑫 . 不同密度下苗带宽度对冬小麦产量调控的生理基础. 泰安:山东农业大学, 2016.
[11] Spink J H, Semere T, Sparkes D L , et al. Effect of sowing date on the optimum plant density of winter wheat annals of applied biology. Annals of Applied Biology, 2000,137(2):179-188.
doi: 10.1111/aab.2000.137.issue-2
[12] 王方瑞 . 密度对不同年代小麦品种产量的影响及其生理基础. 南京:南京农业大学, 2012.
[13] 胡焕焕 . 播种期和密度对冬小麦群体质量和产量的调控效应. 保定:河北农业大学, 2008.
[14] 董秀春, 韩伟, 杨洪宾 . 播量对冬小麦干物质积累、小穗结实性和产量的影响. 山东农业科学, 2018,50(9):31-35.
[15] 任寒, 马云国, 何军光 , 等. 播种量对小麦新品种鑫麦296农艺性状及产量的影响. 山东农业科学, 2018,50(5):43-47.
[16] 薛志伟, 杨春玲, 宋志均 , 等. 不同密度对安麦8号和安麦9号产量和产量构成因素的影响. 中国种业, 2018(4):49-52.
[17] 杨吉福, 刁立功, 赵海涛 , 等. 播期播量对胶东小麦植株性状及产量的影响. 作物杂志, 2013(3):93-95.
[18] 林桦 . 鹿角灵芝产品研讨会在京召开. 中国食品, 2012(21):42.
[19] 刘兆晔 . 小麦株高问题的探讨. 山东农业科学, 2014,46(3):130-134.
[20] 何井瑞, 陈之政, 张洪树 , 等. 不同播期与基本苗对小麦生长发育及产量构成的影响. 中国农学通报, 2015,31(33):37-47.
[21] 常向楠, 陈树林, 程西永 , 等. 稀植和密植下小麦主要农艺性状的遗传差异及关系分析. 河南农业大学学报, 2018,52(4):497-505.
[22] 石祖梁 . 土壤—小麦植株系统氮素运移及高效利用的生态基础. 南京:南京农业大学, 2011.
[23] 张伟 . 不同种植密度下小麦新品系223和2138主要性状的比较研究. 杨凌:西北农林科技大学, 2007.
[24] 李伟华, 张静, 郭振升 , 等. 种植密度对百农418小麦群体动态、产量及农艺性状的影响. 中国农学通报, 2018,34(12):1-6.
[25] 姚金保, 马鸿翔, 张平平 , 等. 种植密度和施氮量对小麦宁麦24籽粒产量和品质的影响. 江苏农业科学, 2018,46(15):41-44.
[26] 王立峰, 张鹏飞, 唐清 , 等. 播期与密度对襄麦D51产量及其构成因素的影响. 湖北农业科学, 2018,57(17):21-25.
[27] 周秋峰, 于沐, 张果果 . 种植密度对小麦生长及产量的影响. 安徽农业科学, 2018,46(20):35-37.
[28] 雷钧杰, 宋敏 . 播种期与播种密度对小麦产量和品质影响的研究进展. 新疆农业科学, 2007,44(B11):138-141.
[29] 海江波, 由海霞, 张保军 . 不同播量对面条专用小麦品种小偃503生长发育、产量及品质的影响. 麦类作物学报, 2002,22(3):92-94.
doi: 10.7606/j.issn.1009-1041.2002.03.082
[1] Song Xiao, Huang Chenchen, Huang Shaomin, Zhang Keke, Yue Ke, Zhang Shuiqing, Guo Doudou, Zhang Yuting. Effects of Tillage and Organic Fertilization Modes on Soil Physical and Chemical Properties and Wheat Yield [J]. Crops, 2020, 36(3): 102-108.
[2] Zhang Yang, Zhang Wei, Zhao Weijun, Shao Rongfeng, Wang Guan, Xue Dingding, Li Jinmei. Variety Screening and Study of Cultivation Technology for Forage Triticale Varieties Based on Principal Component and Grey Relation Analysis [J]. Crops, 2020, 36(3): 117-124.
[3] Lü Guangde, Yin Fuwei, Sun Yingying, Qian Zhaoguo, Xu Jiali, Li Ning, Xue Lina, Wu Ke. Effects of Different Seeding Rates on Yield, Dry Matter Accumulation and Distribution of Linmai 4 [J]. Crops, 2020, 36(3): 142-148.
[4] Liu Yong, Liu Yike, Zhu Zhanwang, Tian Jindong, Chen Ling, Zou Juan, Zhao Fawen, Guan Jian, Gao Chunbao, Tong Hanwen. Current Situation and Analysis on Organic Production of Wheat—Illustrated by the Case of Nanzhang County in Hubei [J]. Crops, 2020, 36(3): 16-21.
[5] Chen Juan, He Jinhong, Liu Jili, Kang Jianhong, Wu Na. Effect of Different Planting Patterns on Starch Formation and Yield of Potato in Semi-Arid Area [J]. Crops, 2020, 36(3): 169-176.
[6] Zhu Yingjie, Liu Fuqi, Zhang Yan, Chang Xuhong, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effect of Nitrogen Treatment on Wheat Yield and Quality in Different Soil Conditions [J]. Crops, 2020, 36(3): 184-190.
[7] Shi Lijuan, Bai Wenbin, Cao Changlin, Gao Peng. Effects of Exogenous Selenium Application on Yield, Grain Selenium Content and Quality in Sorghum [J]. Crops, 2020, 36(3): 191-196.
[8] Li Chunhua, Huang Jinliang, Yin Guifang, Wang Yanqing, Lu Wenjie, Sun Daowang, Wang Chunlong, Guo Laichun, Hong Bo, Ren Changzhong, Wang Lihua. Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat [J]. Crops, 2020, 36(3): 42-46.
[9] Li Hongqin, Liu Baolong, Zhang Bo, Zhang Huaigang. Analysis of Genetic Diversity and Establishment of Molecular ID of the Wheat Cultivars Registered in Qinghai Using SSR [J]. Crops, 2020, 36(3): 60-65.
[10] Duan Junzhi, Qi Xueli, Feng Lili, Zhang Huifang, Sun Yan, Yan Zhaoling, Chen Haiyan, Qi Hongzhi, Fan Wenjie, Yang Cuiping, Liu Yuxia, Ren Yinling, Zhang Jiayuan, Li Ying, Zhuo Wenfei. Progress on Application of Drought Tolerance Genes in Wheat Drought Tolerance Genetic Engineering [J]. Crops, 2020, 36(3): 7-15.
[11] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[12] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[13] Chen Diwen,Zhou Wenling,Ao Junhua,Huang Ying,Jiang Yong,Han Xihong,Qin Yimin,Shen Hong. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[14] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[15] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!