Crops ›› 2020, Vol. 36 ›› Issue (2): 105-111.doi: 10.16035/j.issn.1001-7283.2020.02.016

Previous Articles     Next Articles

Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang

Shen Hongtao1,Zhang Fusheng2,Li Dong3,Qiu Jianhua1,Cai Xinghong4,Qin Yubao4()   

  1. 1 Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, Henan, China
    2 Pingdingshan Branch, Henan Provincial Tobacco Company, Pingdingshan 467000, Henan, China
    3 College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
    4 Mudanjiang Branch of Heilongjiang Provincial Tobacco Corporation, Mudanjiang 157011, Heilongjiang, China
  • Received:2019-09-22 Revised:2019-12-17 Online:2020-04-15 Published:2020-04-13
  • Contact: Yubao Qin E-mail:2871908611@qq.com

Abstract:

In order to determine the effects of different preceding crops and planting density on the growth, yield and quality of Longjiang 911 (a flue-cured tobacco variety) was used as study material in Dongning of Mudanjiang in 2017-2018. The effects of different planting densities (14 500 and 17 400 plant/ha) on growth and yield and quality of flue-cured tobacco were studied through field experiments under the condition of planting flue-cured tobacco, soybean and corn in the preceding crop. The results showed that in the two years, compared with tobacco stubble, the plant height, stem circumference, maximum leaf area, sensory quality and economic benefit of flue-cured tobacco stubble were significantly increased compared with soybean stubble and corn stubble, and the effect of corn stubble was the best. In the two years, with the decrease of planting density, the plant height, stem circumference, leaf area, sensory quality and economic characteristics of flue-cured tobacco were significantly improved under the same preceding crop stubble. According to the comprehensive indicators, 14 500 plant/ha of planting density and corn stubble could make the plant height, stem circumference, leaf area, average price and output value reaching the maximum value of flue-cured tobacco, and the chemical composition of tobacco leaves become more coordinated and the sensory quality is the best. Therefore, we suggest the planting mode could be further demonstrated and popularized in Mudanjiang area.

Key words: Flue-cured tobacco, Planting density, Preceding crop, Yield, Sensory quality

Table 1

Soil basic fertility of the experiment fields in 2017-2018"

年份
Year
前茬作物
Preceding crop
有机质(g/kg)
Organic matter
碱解氮(mg/kg)
Alkali- hydrolyzable nitrogen
速效磷(mg/kg)
Available phosphorus
速效钾(mg/kg)
Available potassium
Cl-
(mg/kg)
pH
2017 烟草 21.2 106.3 42.6 122.5 23.7 6.2
大豆 22.2 108.5 48.6 148.8 20.9 6.4
玉米 23.3 114.7 50.4 154.6 23.9 6.3
2018 烟草 21.9 105.4 49.3 134.6 21.7 6.1
大豆 23.5 115.3 53.2 156.4 17.2 6.2
玉米 23.4 116.6 55.1 155.3 20.3 6.2

Table 2

Agronomic traits of tobacco plants at round top stage under different treatments"

年份
Year
种植密度
Planting density
前茬作物
Preceding crop
株高(cm)
Plant height
茎围(cm)
Stem circumference
最大叶面积 Maximum leaf area (cm2)
下部叶Lower leaf 中部叶Middle leaf 上部叶Upper leaf
2017 D1 CK 95.87±0.63c 6.73±0.63d 860.45±33.41d 820.65±19.35d 602.54±29.78d
T1 98.67±0.23c 6.87±0.35d 893.57±19.51c 846.32±22.12d 639.68±24.62d
T2 106.91±0.64b 8.32±0.61b 936.84±29.77c 946.28±35.29c 753.19±22.89c
D2 CK 103.54±0.48b 7.56±0.35c 964.61±31.25bc 951.67±25.16c 780.68±25.28bc
T1 105.63±0.76b 8.60±0.56b 1 027.61±27.86b 1 019.37±19.83b 806.21±27.33b
T2 111.35±0.63a 9.65±0.32a 1 099.23±21.71a 1 129.79±21.08a 875.24±16.81a
2018 D1 CK 99.65±1.32e 7.13±0.53d 864.53±18.78d 876.51±25.16d 641.65±16.49d
T1 105.32±0.37d 7.17±0.17d 912.65±21.63c 884.16±19.23d 673.23±25.56cd
T2 113.61±0.33b 9.67±0.33b 975.42±32.12b 985.83±41.49c 776.67±27.79b
D2 CK 103.56±1.06c 7.41±0.10cd 983.65±20.14b 961.42±15.64c 703.31±21.31c
T1 108.14±0.43c 7.90±0.06c 1 058.54±28.30a 1 055.54±26.41b 732.46±32.08bc
T2 116.34±0.33a 10.83±0.17a 1 087.08±18.12a 1 177.63±14.97a 932.79±9.43a

Table 3

Economic traits of flue-cured tobacco under different treatments"

年份
Year
种植密度 Planting
density
前茬作物
Preceding
crop
产量
Yield
(kg/hm2)
均价(元/kg)
Average price
(yuan/kg)
产值(元/hm2)
Output value
(yuan/hm2)
上等烟比例(%)
Proportion of
superior leaves
上中等烟比例(%)
Proportion of moderate
and superior leaves
2017 D1 CK 2 181.14±16.76c 20.03±0.55c 43 688.23±663.45d 25.54±2.13d 74.56±2.41d
T1 2 386.46±15.61b 20.34±0.32c 48 540.60±1565.32c 30.80±2.13c 83.15±1.53c
T2 2 436.45±35.48a 20.12±0.33c 49 021.37±844.74bc 31.56±1.32c 86.54±0.63b
D2 CK 2 083.41±24.64d 21.14±0.54b 44 043.29±1352.61d 32.31±2.45c 85.18±2.64b
T1 2 364.54±15.15b 21.33±0.24b 50 435.64±1036.49b 36.48±1.05b 91.23±1.34a
T2 2 356.54±26.84b 22.91±0.23a 53 988.33±954.34a 40.26±2.12a 92.12±1.02a
2018 D1 CK 2 241.35±15.66d 19.63±0.54d 43 997.70±1598.64d 28.64±5.21d 78.49±2.06d
T1 2 421.15±24.32b 19.36±0.21d 46 873.46±2514.21cd 32.90±3.44d 86.81±1.02c
T2 2 495.25±31.56a 20.34±0.13c 50 753.39±1254.48b 43.33±0.97c 89.60±0.23b
D2 CK 2 204.17±28.64d 21.88±0.43b 48 227.24±1342.67c 35.33±2.51d 82.42±3.41cd
T1 2 322.34±28.64c 21.93±0.22b 50 928.92±962.54b 59.47±1.33b 90.52±1.04b
T2 2 396.65±32.15bc 22.89±0.31a 54 859.32±1634.65a 64.22±1.62a 93.40±1.68a

Table 4

The content of conventional chemical components in tobacco leaves under different treatments %"

年份
Year
等级
Grade
种植密度
Planting density
前茬作物
Preceding crop
总糖
Total sugar
还原糖
Reducing sugar
总氮
Total nitrogen
烟碱
Nicotine

Chlorine

Potassium
钾氯比
Potassium-chlorine ratio
2017 C2L D1 CK 39.63a 32.61a 1.12d 1.13d 0.97b 0.94d 0.98d
T1 38.33b 32.21a 1.52ab 1.32c 0.94b 0.95d 1.01d
T2 37.41bc 30.26b 1.33b 1.49b 0.96b 1.09c 1.14c
D2 CK 36.41c 25.32c 1.21c 1.46b 1.09a 1.12c 1.03d
T1 34.64d 24.55c 1.65a 1.64a 0.99b 1.34b 1.35b
T2 34.34d 23.81c 1.37b 1.73a 1.06a 1.62a 1.53a
B2F D1 CK 32.64c 28.13b 2.03d 1.57c 1.20c 1.29d 1.08e
T1 30.27d 26.23c 2.35b 1.83b 1.09d 1.35d 1.24d
T2 31.14cd 27.47b 2.12c 1.85b 1.13d 1.61c 1.42c
D2 CK 34.01a 28.99a 2.14c 1.81b 1.35a 1.71c 1.27d
T1 33.26b 28.85a 2.66a 1.94a 1.18c 1.87b 1.58b
T2 34.21a 29.65a 2.31b 1.98a 1.26b 2.08a 1.65a
2018 C2L D1 CK 41.33a 26.61a 1.32e 1.18c 0.92a 1.10e 1.20e
T1 41.96a 26.52a 1.69b 1.28b 0.84b 1.24d 1.48d
T2 39.24b 26.78a 1.55c 1.29b 0.88b 1.35c 1.53d
D2 CK 35.41c 25.34b 1.42d 1.21c 0.73c 1.45c 1.99c
T1 34.82c 23.63c 1.86a 1.34a 0.64d 1.62b 2.53b
T2 33.34c 22.51c 1.76a 1.38a 0.66d 1.78a 2.70a
B2F D1 CK 35.14bc 24.32b 1.52d 1.63d 0.89a 1.21e 1.36e
T1 32.52c 23.15c 1.99b 1.92ab 0.81b 1.35d 1.67d
T2 33.23c 22.56c 2.07a 1.89b 0.78b 1.61c 2.06c
D2 CK 39.62a 26.12a 1.91c 1.73c 0.76b 1.66c 2.18c
T1 36.82b 24.94ab 2.08a 1.94a 0.61d 1.87b 2.63b
T2 39.34a 25.73a 1.89c 1.98a 0.72c 1.95a 3.15a

Table 5

The scores of sensory quality evaluation of tobacco leaves under different treatments"

年份
Year
等级
Grade
种植密度
Planting density
前茬作物
Preceding crop
香气质
Aroma quality
香气量
Aroma volume
浓度
Concentration
柔细度
Tender degree
余味
Agreeable aftertaste
杂气
Offensive odor
刺激性
Irritation
2017 C2L D1 CK 6.0 5.2 5.5 6.0 6.0 6.0 5.8
T1 6.2 5.4 5.6 6.2 6.2 6.0 5.7
T2 6.3 5.7 5.7 6.4 6.3 6.2 5.9
D2 CK 6.3 5.5 5.6 6.4 6.3 6.3 5.9
T1 6.4 5.7 5.8 6.5 6.4 6.3 6.0
T2 6.4 5.7 5.8 6.5 6.5 6.4 6.1
B2F D1 CK 5.4 5.4 5.3 5.5 5.6 5.7 5.9
T1 5.6 5.5 5.4 5.6 5.6 5.7 5.8
T2 5.8 5.7 5.8 5.9 5.8 5.9 6.0
D2 CK 5.8 5.7 5.9 6.0 5.9 6.0 6.2
T1 6.0 5.8 6.1 6.0 5.9 6.1 6.1
T2 6.1 6.0 6.2 6.1 6.1 6.1 6.2
2018 C2L D1 CK 6.0 5.4 5.3 6.1 6.2 5.9 6.0
T1 6.1 5.5 5.5 6.3 6.2 5.9 5.9
T2 6.3 5.6 5.6 6.6 6.5 6.1 6.0
D2 CK 6.2 5.6 5.6 6.5 6.5 6.2 6.1
T1 6.4 5.7 5.7 6.7 6.7 6.2 6.1
T2 6.5 5.7 5.7 6.7 6.7 6.3 6.1
B2F D1 CK 5.4 5.4 5.3 5.6 5.8 5.5 6.0
T1 5.5 5.4 5.5 5.8 5.8 5.6 5.9
T2 5.9 5.8 5.8 6.1 6.0 5.6 6.0
D2 CK 6.0 5.8 6.1 6.0 6.0 6.0 6.1
T1 6.0 5.9 6.3 6.1 6.0 6.0 6.0
T2 6.2 6.2 6.4 6.3 6.3 6.0 6.1
[1] 刘超, 陈伟, 杨永锋 , 等. 河南浓香型烤烟叶面不同分切区位非挥发性有机酸含量和感官质量的变化. 中国农业科技导报, 2018,20(12):122-129.
[2] 崔英 . 黔南烤烟化学成分与感官质量的典型相关分析. 安徽农业科学, 2017,45(33):21-25.
[3] 杜卫民, 信俊峰, 陈利平 , 等. 8个烤烟新品种(系)在广元烟区的农艺性状及品质差异. 贵州农业科学, 2018,46(11):24-27.
[4] 贾方方 . 不同种植密度烟草叶面积指数的高光谱估测模型. 中国烟草科学, 2017,38(4):37-43.
[5] 张喜峰, 张立新, 高梅 , 等. 密度与氮肥互作对烤烟氮钾含量、光合特性及产量的影响. 中国土壤与肥料, 2013(2):32-36,61.
[6] 李巧艳, 齐绍武 . 不同种植密度对烤烟生长发育和经济性状的影响. 安徽农业科学, 2016,44(2):71-72.
[7] 张海平, 王紫微, 赵晓军 , 等. 种植密度对昆明烟区‘云烟87’品质及经济性状的影响. 中国农学通报, 2018,34(17):52-55.
[8] 夏体渊, 靳松, 陈兴位 , 等. 不同种植密度对烤烟K326产量和品质的影响. 西南农业学报, 2017,30(1):58-61.
[9] 陈继峰, 蔡凯旋, 孙会 , 等. 河南烤烟连作状况调查与分析. 河南农业科学, 2015,44(11):34-37.
[10] 张艳 . 烤烟连作、烤烟—玉米轮作对烟叶品质和土壤养分的影响. 河南农业科学, 2014,43(8):45-48,116.
[11] 段玉琪, 胡小东, 晏飞 , 等. 不同前作对紫色植烟土壤微生物数量、养分及烤烟产质量的影响. 河南农业科学, 2017,46(10):54-59.
[12] 刘晔, 姜瑛, 王国文 , 等. 不同连作年限对植烟土壤理化性状及微生物区系的影响. 中国农学通报, 2016,32(13):136-140.
[13] 彭云, 赵正雄, 李忠环 , 等. 不同前茬对烤烟生长、产量和质量的影响. 作物学报, 2010,36(2):335-340.
[14] 刘枫, 赵正雄, 李忠环 , 等. 不同前茬作物条件下烤烟氮磷钾养分平衡. 应用生态学报, 2011,22(10):2622-2626.
[15] 刘浩, 周冀衡, 张毅 , 等. 不同土壤类型前茬作物对烤烟化学成分和品质的影响. 湖南农业大学学报(自然科学版), 2015,41(5):491-495.
[16] 牛建行, 王冉, 闫荣 , 等. 种植密度和留叶数对重庆巫山云烟97株型和产质量的影响. 西南大学学报(自然科学版), 2015,37(12):9-16.
[17] 吴丽君, 石凤学, 刘晶 , 等. 烟草香气成分分析研究进展. 中国农学通报, 2014,30(21):251-257.
[18] 李海平, 朱列书, 黄魏魏 , 等. 种植密度对烟田环境、烤烟农艺性状及产量质量的影响研究进展. 作物研究, 2008,22(5):489-490.
[19] 刘佳, 戴林建, 王勇 , 等. 密度与施氮量对烤烟农艺性状及烟叶主要化学成分的互作效应. 作物研究, 2017,31(2):152-159.
[20] 陈彦春, 卜婷, 赵遂生 , 等. 作物茬口对土壤酶活性及烟叶化学成分的影响. 湖北农业科学, 2018,57(4):47-50.
[21] 刘优雄, 周冀衡, 邓小刚 , 等. 不同前作土壤对烤烟生长和化学成分影响的研究. 作物研究, 2010,24(3):173-177.
[22] 马二登, 薛如君, 胡志明 , 等. 基肥施用方式对烤烟化学成分与感官质量的影响. 云南农业大学学报(自然科学), 2018,33(4):757-762.
[23] 夏素素, 赵莉, 杨惠娟 , 等. 基于香气物质含量和感官评价的豫西烤烟关键栽培技术优化. 烟草科技, 2018,51(6):1-8.
[24] 张渝婕, 赵铭钦, 贺凡 , 等. 密度和氮用量对烤烟上部叶中性致香物质和感官质量的影响. 中国烟草科学, 2015,36(6):37-42.
[25] 王欣英 . 前茬作物玉米和甘薯对烟草的轮作效应及其机理的研究. 泰安:山东农业大学, 2006.
[26] 刘领, 李冬, 申洪涛 , 等. 摘除不适用叶与喷施光碳核肥对烤烟上部叶生理代谢及品质的影响. 烟草科技, 2019,52(2):25-32.
[27] 江厚龙, 徐宸, 汪代斌 , 等. 摘除下部叶对不同肥力水平烤烟品质和经济效益的影响. 西南农业学报, 2016,29(9):2180-2186.
[28] 李冬, 周俊学, 刘领 , 等. 摘除不适用烟叶数量与方式对烤烟生理特性及产质量的影响. 贵州农业科学, 2018,46(5):19-24.
[29] 孟源 . 烤烟轮作周期内养分循环规律及肥料统筹技术研究. 贵阳:贵州大学, 2015.
[1] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Wang Tianwen,Li Changzhong,Chen Guanghai. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[3] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[4] Chen Diwen,Zhou Wenling,Ao Junhua,Huang Ying,Jiang Yong,Han Xihong,Qin Yimin,Shen Hong. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[5] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[6] Fan Yegeng,Yan Haifeng,Chen Rongfa,Qiu Lihang,Zhou Huiwen,Huang Xing,Weng Mengling,Wu Jianming,Li Yangrui,Wei Shengman. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
[7] Liu Xin,Zhu Rong,Yang Mei,Liu Zhangyong. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[8] Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[9] Yang Zhichang,Shen Tao,Luo Zhuo,Peng Zhi,Hu Yuqian,Zi Tao,Xiong Tinghao,Song Haixing. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[10] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[11] Zhang Bo,Gao Tiantian,Cheng Hongbo,Li Rui,Chai Yuwei,Li Yawei,Chai Shouxi. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[12] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Analysis of the Characteristics of Dry Matter Production and Light Energy Utilization of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2020, 36(1): 41-46.
[13] Jing Peipei,Ren Hongru,Yang Hongjian,Dai Qigen. Effects of Saline Stress on Leaf Photosynthesis Characteristics and Grain Yield of Two Rice Cultivars (Lines) [J]. Crops, 2020, 36(1): 67-75.
[14] Huang Yinling,Lei Zhongshun,Zheng Tao,Suo Xinxia. Effects of Different Nitrogen Concentrations on Yield and Benefit of Winter Wheat and Soil Physical and Chemical Properties [J]. Crops, 2020, 36(1): 130-135.
[15] Zhang Yongqiang,Qi Xiaoxiao,Zhang Lu,Dong Huiyun,Chen Chuanxin, Sailihan·Sai,Xue Lihua,Chen Xingwu,Lei Junjie. Effects of Nitrogen Management on Leaf Photosynthetic Characteristics and Yield of Winter Wheat under Drip Irrigation [J]. Crops, 2020, 36(1): 141-145.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .