Crops ›› 2020, Vol. 36 ›› Issue (6): 8-16.doi: 10.16035/j.issn.1001-7283.2020.06.002
Previous Articles Next Articles
Zhao Yuyang1(), Song Jian2, Qiu Lijuan1()
[1] | Wilkins M R, Sanchez J C, Gooley A A, et al. Progress with proteome projects:why all proteins expressed by a genome should be identified and how to do it. Biotechnology & Genetic Engineering Reviews, 1996,13(1):19-50. |
[2] | 何大澄, 肖雪媛. 差异蛋白质组学及其应用. 北京师范大学学报(自然科学版), 2002,38(4):558-562. |
[3] |
Jorrín-Novo J V, Maldonado A M, Echevarría-Zomeno S, et al. Plant proteomics update (2007-2008):second-generation proteomic techniques,an appropriate experimental design,and data analysis to fulfill MIAPE standards,increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 2009,72(3):285-314.
doi: 10.1016/j.jprot.2009.01.026 |
[4] |
Komatsu S, Kajiwara H, Hirano H. Soybean seed 34kDa oil-body associated protein separated by two-dimensional gel electrophoresis. Plant Science, 1992,81(1):21-27.
doi: 10.1016/0168-9452(92)90020-M |
[5] |
Herman E M, Helm R M, Jung R, et al. Genetic modification removes an immune dominant allergen from soybean. Plant Physiology, 2003,132(1):36-43.
doi: 10.1104/pp.103.021865 pmid: 12746509 |
[6] |
Nathan W O, Annamraju D S, James K W, et al. Proteomic analysis of soybean nodule cytosol. Phytochemistry, 2008,69(13):2426-2438.
doi: 10.1016/j.phytochem.2008.07.004 pmid: 18757068 |
[7] |
Ahsan N, Donnart T, Nouri M Z, et al. Tissue specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Journal of Proteome Research, 2010,9(8):4189-4204.
doi: 10.1021/pr100504j pmid: 20540562 |
[8] |
Xu C, Sullivan J H, Garrett W M, et al. Impact of solar ultraviolet-B on the proteome in soybean lines differing in flavonoid contents. Phytochemistry, 2008,69(1):38-48.
doi: 10.1016/j.phytochem.2007.06.010 pmid: 17645898 |
[9] |
Hajduch M, Gnapathy A, Stein J W, et al. A systematic proteomic study of seed filling in soybean:Establishment of high-resolution two-dimensional reference maps,expression profiles,and an interactive proteome database. Plant Physiology, 2005,137(4):1397-1419.
doi: 10.1104/pp.104.056614 pmid: 15824287 |
[10] |
Ahsan N, Komatsu S. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics, 2009,9(21):4889-4907.
doi: 10.1002/pmic.200900308 pmid: 19862761 |
[11] | 郑维薇. 驯化和育种对大豆叶片蛋白质组的影响. 南昌:南昌大学, 2012. |
[12] |
Sobhanian H, Razavizadeh R, Nanjo Y, et al. Proteome analysis of soybean leaves,hypocotyls and roots under salt stress. Proteome Science, 2010,8(1):1-15.
doi: 10.1186/1477-5956-8-1 |
[13] |
Mohammadi P P, Moieni A, Hiraga S, et al. Organ-specific proteomic analysis of drought-stressed soybean seedlings. Journal of Proteomics, 2012,75(6):1906-1923.
doi: 10.1016/j.jprot.2011.12.041 pmid: 22245419 |
[14] |
Ahsan N, Nanjo Y, Sawada H, et al. Ozone stress-induced proteomic changes in leaf total soluble and chloroplast proteins of soybean reveal that carbon allocation is involved in adaptation in the early developmental stage. Proteomics, 2010,10(14):2605-2619.
doi: 10.1002/pmic.201000180 pmid: 20443193 |
[15] |
Gupta R, Min C W, Kramer K, et al. A multi-omics analysis of Glycine max leaves reveals alteration in flavonoid and isoflavonoid metabolism upon ethylene and abscisic acid treatment. Proteomics, 2018,18(7):e1700366.
doi: 10.1002/pmic.201700366 pmid: 29457974 |
[16] |
Tian X, Liu Y H, Zhi G, et al. Comparative proteomic analysis of seedling leaves of cold-tolerant and -sensitive spring soybean cultivars. Molecular Biology Reports, 2015,42(3):581-601.
doi: 10.1007/s11033-014-3803-4 pmid: 25359310 |
[17] |
Arai Y, Hayashi M, Nishimura M. Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant & Cell Physiology, 2008,49(4):526-539.
doi: 10.1093/pcp/pcn027 pmid: 18281324 |
[18] |
Kamal A H, Komatsu S. Involvement of reactive oxygen species and mitochondrial proteins in biophoton emission in roots of soybean plants under flooding stress. Journal of Proteome Research, 2015,14(5):2219-2236.
doi: 10.1021/acs.jproteome.5b00007 pmid: 25806999 |
[19] |
Dekker J P, Boekema E J. Supramolecular organization of thylakoid membrane proteins in green plants. Biochimica et Biophysica Acta Bioenergetics, 2005,1706(1/2):12-39.
doi: 10.1016/j.bbabio.2004.09.009 |
[20] | Rhee K H. PhotosystemⅡ:The solid structural era. Annual Review of Biophysics & Biomolecular Structure, 2001,30(1):307-328. |
[21] | 宋健. 大豆种皮色相关基因的图位克隆及功能解析. 北京:中国农业科学院, 2019. |
[22] |
Wang M, Li W, Fang C, et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nature Genetics, 2018,50(10):1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[23] |
Zhou W, Cheng Y, Yap A, et al. The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. The Plant Journal, 2009,58(1):82-96.
doi: 10.1111/j.1365-313X.2008.03766.x pmid: 19054358 |
[24] |
Young N D, Zamir D, Ganal M W, et al. Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics, 1988,120(2):579-585.
pmid: 17246482 |
[25] |
Muehlbauer G J, Speech J E, Thomas-Compton M A, et al. Near-isogenic lines-A potential resource in the integration of conventional and linkage maps. Crop Science, 1988,28(5):729-735.
doi: 10.2135/cropsci1988.0011183X002800050002x |
[26] |
Lesage V S, Merlino M, Chambon C, et al. Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. Journal of Experimental Botany, 2012,63(2):1001-1011.
doi: 10.1093/jxb/err330 |
[27] |
Torabi S, Wissuwa M, Heidari M, et al. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency. Proteomics, 2009,9(1):159-170.
doi: 10.1002/pmic.200800350 pmid: 19053143 |
[28] |
Wang N, Cao D, Gong F, et al. Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines. Journal of Proteomics, 2015,128:113-122.
doi: 10.1016/j.jprot.2015.07.027 pmid: 26244907 |
[29] |
Khan N A, Takahashi R, Abe J, et al. Identification of cleistogamy-associated proteins in flower buds of near-isogenic lines of soybean by differential proteomic analysis. Peptides, 2009,30(12):2095-2102.
doi: 10.1016/j.peptides.2009.08.012 |
[30] |
Brechenmacher L, Nguyen T H N, Zhang N, et al. Identification of soybean proteins and genes differentially regulated in near isogenic lines differing in resistance to aphid infestation. Journal of Proteome Research, 2015,14(10):4137-4146.
doi: 10.1021/acs.jproteome.5b00146 pmid: 26350764 |
[31] |
Kashino Y, Lauber W M, Carroll J A, et al. Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry, 2002,41(25):8004-8012.
doi: 10.1021/bi026012+ pmid: 12069591 |
[32] |
McKenzie S D, Ibrahim I M, Aryal U K, et al. Stoichiometry of protein complexes in plant photosynthetic membranes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2020,1861(2):148141.
doi: 10.1016/j.bbabio.2019.148141 |
[33] |
Peltier J, Wijk K. Proteomics of the chloroplast:systematic identification and targeting analysis of lumenal and peripheral thylakoid proteins. The Plant Cell, 2000,12(3):319-341.
doi: 10.1105/tpc.12.3.319 pmid: 10715320 |
[34] |
Shao J Z, Zhang Y b, Yu J L, et al. Isolation of thylakoid membrane complexes from rice by a new double-strips BN/SDS-PAGE and bioinformatics prediction of stromal ridge subunits interaction. PLoS ONE, 2011,6(5):e20342.
doi: 10.1371/journal.pone.0020342 pmid: 21637806 |
[35] |
Wall D B, Kachman M T, Gong S, et al. Isoelectric focusing nonporous RP HPLC:a two-dimensional liquid-phase separation method for mapping of cellular proteins with identification using MALDI-TOF mass spectrometry. Analytical Chemistry, 2000,72(6):1099-1111.
doi: 10.1021/ac991332t pmid: 10740846 |
[36] |
Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry, 1996,68(5):850-858.
doi: 10.1021/ac950914h pmid: 8779443 |
[37] |
Swain M, Ross N W. A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis, 1995,16(6):948-951.
doi: 10.1002/elps.11501601159 pmid: 7498141 |
[1] | Wang Caijin, Di Wenjing, Ma Shumei, Wang Yang. Mining the Elite Allele of Resistance of Cercospora sojina Hara Race 1 in Soybean Resources [J]. Crops, 2020, 36(6): 189-196. |
[2] | Chang Shihao, Yang Qingchun, Shu Wentao, Li Jinhua, Li Qiong, Zhang Baoliang, Zhang Donghui, Geng Zhen. Comprehensive Analysis of Main Agronomic Traits of Summer Sowing Soybean Varieties (Lines) in Huang-Huai-Hai Region [J]. Crops, 2020, 36(3): 66-72. |
[3] | Xu Ran, Wang Caijie, Zhang Lifeng, Li Wei, Zhang Yanwei, Lin Yanhui, Li Weiu. The Breeding of Soybean Variety Qihuang 34 by Phenotypic Design Breeding Technology [J]. Crops, 2020, 36(3): 73-78. |
[4] | Huang Junxia,Huang Tian,Rao Demin,Zhang Minghao,Meng Fangang,Yan Xiaoyan,Zhang Wei. Effects of Water and Fertilizer Integration and Chemical Control Measures after Flowering on Soybean Yield and Physiological Characteristics [J]. Crops, 2020, 36(2): 82-87. |
[5] | Wang Mingyao,Cao Liang,Yu Qi,Zou Jingnan,He Songyu,Qin Bin,Wang Mengxue,Zhang Yuxian. Effects of Melatonin Soaking on Germination of Soybean Seeds under Saline-Alkali Stress [J]. Crops, 2019, 35(6): 195-202. |
[6] | Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties [J]. Crops, 2019, 35(5): 41-45. |
[7] | Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance [J]. Crops, 2019, 35(4): 10-16. |
[8] | Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65. |
[9] | Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83. |
[10] | Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135. |
[11] | Bo Liu,Ling Wei,Junhong Xiao,Haifeng Yang,Xueyan Duan,Aiping Chen,Ruilan Ren. Study on Improving the Hybrid Seed Setting Rate of Soybean [J]. Crops, 2019, 35(1): 81-84. |
[12] | Yue Li,Haiyan Li,Jidong Yu,Jie Deng,Yuanfu Gong,Junshu Zhu. Allelopathy of Extracts from Hemp Straw on Soybean [J]. Crops, 2019, 35(1): 175-179. |
[13] | Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System [J]. Crops, 2018, 34(4): 114-120. |
[14] | Mingjun Zhang,Zhongfeng Li,Lili Yu,Jun Wang,Lijuan Qiu. Identification and Screening of Protein Subunit Variation Germplasm from Both Mutants and Natural Population in Soybean [J]. Crops, 2018, 34(3): 44-50. |
[15] | Jiani Zhu,Huiping Dai,Shuhe Wei,Genliang Jia,Dejing Chen,Jinjin Pei,Qing Zhang,Long Qiang. Effects of Applying Zn on the Growth and Zn Accumulation in Soybean at Flowering Stage [J]. Crops, 2018, 34(1): 152-155. |
|