Crops ›› 2021, Vol. 37 ›› Issue (1): 16-25.doi: 10.16035/j.issn.1001-7283.2021.01.003
Previous Articles Next Articles
Liu Xiaoli1,2(), Han Litao1, Wei Nan1, Shen Fei1, Cai Yilin2()
[1] | 李向拓, 毛建昌, 吴权明. 分子标记在玉米育种中的应用. 玉米科学, 2004,43(2):26-29. |
[2] | 贾波, 管飞翔, 谢庆春, 等. 玉米产量性状QTL定位分析. 西南农业学报, 2013,26(1):22-25. |
[3] | 黄荣荣, 周子键, 陈甲法, 等. 玉米缺陷性籽粒突变体的遗传分析及突变基因dek1-T7的定位. 分子植物育种, 2012,10(2):163-168. |
[4] |
Li X, Chen G H, Zhang W Y, et al. Genome-wide transcriptional analysis of maize endosperm in response to ae wx double mutations. Journal of Genetics and Genomics, 2010,37(11):749-762.
doi: 10.1016/S1673-8527(09)60092-8 pmid: 21115169 |
[5] |
Yi G, Lauter A M, Scott M P, et al. The thick aleurone 1 mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernell. Plant Physiology, 2011,156:1826-1836.
doi: 10.1104/pp.111.177725 pmid: 21617032 |
[6] | 宋同明, 陆效武. 对一个玉米双重标记新突变基因(os)的染色体定位和初步遗传研究. 遗传学报, 1993(5):432-438. |
[7] | Lid S E, Gruis D, Jung R, et al. The defective kernel 1 (dek1) gene require for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2002,8(99):5460-5465. |
[8] |
Jahnke S, Scholten S. Epigenetic resetting of a gene imprinted in plant embryos. Current Biology, 2009,19:1677-1681.
doi: 10.1016/j.cub.2009.08.053 pmid: 19781944 |
[9] |
Li Y, Fan C, Xing Y, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 2011,43(12):1266-1269.
doi: 10.1038/ng.977 pmid: 22019783 |
[10] |
Kellogg E A. Evolutionary history of the grasses. Plant Physiology, 2001,125(3):1198-1205.
pmid: 11244101 |
[11] | 王建兵, 汤华, 黄益勤, 等. 玉米和水稻重要性状QTL的比较研究. 遗传学报, 2004,31(12):1401-1407. |
[12] |
Raith M R, Kelty C A, Griffith J F, et al. Comparison of PCR and quantitative real-time PCR methods for the characterization of ruminant and cattle fecal pollution sources. Water Research, 2013,47(18):6921-6928.
doi: 10.1016/j.watres.2013.03.061 pmid: 23871256 |
[13] | 刘晓丽, 魏楠. 拟南芥的遗传转化. 河南农业, 2019(27):45-46. |
[14] | Xu C J, Liu Y, Li Y B, et al. Differential expression of GS5 regulates grain size in rice. Journal of Experimental Botany, 2015,9(66):2611-2623. |
[15] | 胡甘雨, 司风铃, 车燕飞, 等. 葱蝇过氧化氢酶基因的克隆及生物信息学分析. 西南大学学报(自然科学版), 2014,36(2):32-40. |
[16] |
Mahoney J A, Ntolosi B, DaSilva R P, et al. Cloning and characterization of CPVL,a novel serine carboxypeptidase,from human macrophages. Genomics, 2001,72:243-251.
doi: 10.1006/geno.2000.6484 pmid: 11401439 |
[17] | Shirley A M, Chapple C. Biochemical characterization of sinapoyglucose choline sinapolytransferase,a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. Journal Biological Chemistry, 2003,278(22):19870-19877. |
[18] |
Cercós M, Urbez C, Carbonell J. A serine carboxypeptidase gene (PsCP),expressed in early steps of reproductive and vegetative development in Pisum sativum,is induced by gibberellins. Plant Molecular Biology, 2003,51(2):165-174.
doi: 10.1023/a:1021142403856 pmid: 12602875 |
[19] |
刘丽, 王静, 张志明, 等. 玉米丝氨酸羧肽酶基因(ZmSCP)的克隆及表达分析. 作物学报, 2013,39(1):164-171.
doi: 10.3724/SP.J.1006.2013.00164 |
[20] |
Liu H Z, Wang X E, Zhang H J, et al. A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene, 2008,420:57-65.
pmid: 18571878 |
[1] | Li Yanfang,Du Yanwei,Zhang Zheng,Wang Gaohong,Zhao Genyou,Zhao Jinfeng,Yu Aili. Establishment and Optimization of Agrobacterium Mediated Transformation System for Mature Embryo of Foxtail Millet [J]. Crops, 2019, 35(3): 73-79. |
[2] | Haibin Luo, Shengli Jiang, Chengmei Huang, Huiqing Cao, Zhinian Deng, Kaichao Wu, Lin Xu, Zhen Lu, Yuanwen Wei. Cloning and Expression of ScHAK10 Gene in Sugarcane [J]. Crops, 2018, 34(4): 53-61. |
[3] | Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum [J]. Crops, 2018, 34(1): 56-61. |
|