Crops ›› 2021, Vol. 37 ›› Issue (6): 67-71.doi: 10.16035/j.issn.1001-7283.2021.06.011

Previous Articles     Next Articles

Response of Different Spring Wheat Varieties to Nitrogen Treatment

Gao Tiantian(), Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong(), Zhao Guangcai()   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
  • Received:2021-02-06 Revised:2021-07-08 Online:2021-12-15 Published:2021-12-16
  • Contact: Chang Xuhong,Zhao Guangcai E-mail:gtt1368518579@126.com;changxuhong@caas.cn;zhaoguangcai@caas.cn

Abstract:

To explore the response of spring wheat varieties to nitrogen treatment, pot experiment was conducted with Egypt1 and Egypt2 (coming from Egypt), Jinqiang 6 and Jinqiang 11 (coming from Tianjin, China) spring wheat varieties, under no nitrogen (B1), urea 1g/pot (B2), urea 1.5g/pot (B3) nitrogen treatments. Plant characteristics, yield, protein content and its components were measured at maturity stage. The results showed that the spike length, number of grains per spike, number of spikelets, 1000-grain weight, and grain yield of Egypt2 were all higher than those of Jinqiang 6, but Jinqiang 6 had the highest total protein content, albumin, prolamin and glutelin. With the increase in the amount of N applied at jointing stage, the number of grains per spike, the 1000-grain weight, the grain yield, the content of protein and its constituents of wheat gradually increased, and the B3 treatment was the highest. Among the different treatment combinations, Egypt2 with the higher nitrogen input had the highest 1000-grain weight and yield, while Jinqiang 6 with the higher nitrogen input had the highest content of total protein and its components in the grain. Increasing the nitrogen supply at jointing stage was beneficial to increase the wheat yield, the contents of total protein and its constituents. In conclusion, the yield of Egypt2 was the highest and the protein content of Jinqiang 6 was the highest. Wheat yield and quality were improved by the rational application of nitrogen fertilizer, and wheat growth was best when 1.5g/pot of urea was applied. The variety and the amount of nitrogen applied had a major influence on the yield and quality of wheat.

Key words: Spring wheat, Jointing stage, Nitrogen application rate, Yield, Protein content

Table 1

Basic nutrients of soil"

土壤
类型
Soil
type
有机质
Organic
matter
(g/kg)
全氮
Total
nitrogen
(g/kg)
碱解氮
Alkaline hydrolysis
nitrogen
(mg/kg)
速效磷
Available
phosphorus
(mg/kg)
速效钾
Available
potassium
(mg/kg)
黑土
Black soil
26.135 3.464 276.65 47.85 234

Table 2

Agronomic characteristics and yield differences among spring wheat varieties"

品种
Variety
株高
Plant height (cm)
穗长
Spike length (cm)
穗粒数
Grains per spike
总小穗数
Total spikelet
千粒重
1000-grain weight (g)
产量(g/盆)
Grain yield (g/pot)
A1 48.06±1.51cC 6.29±0.28cC 21.38±0.56cB 17.16±0.41bAB 46.13±3.16bB 7.86±0.59cC
A2 57.83±1.70bB 7.16±0.20aA 32.79±1.56aA 18.00±0.38aA 55.88±1.81aA 14.66±0.77aA
A3 61.30±2.94aA 6.98±0.22aAB 31.61±1.55abA 15.17±0.59dC 44.08±1.35cB 11.16±0.79bB
A4 40.54±3.06dD 6.68±0.37bB 31.38±0.66bA 16.30±0.87cB 45.70±0.62bcB 11.49±0.23bB

Table 3

Effects of nitrogen application amount on agronomic characteristics and yield of spring wheat"

处理
Treatment
株高
Plant height (cm)
穗长
Spike length (cm)
穗粒数
Grains per spike
总小穗数
Total spikelet
千粒重
1000-grain weight (g)
产量(g/盆)
Grain yield (g/pot)
B1 52.51±9.30aA 6.92±0.38aA 29.08±5.09aA 16.65±1.35aA 47.30±4.57bA 11.03±2.64aA
B2 52.57±8.77aA 6.68±0.48aA 29.33±4.54aA 16.78±1.09aA 47.51±5.38bA 11.22±2.47aA
B3 50.73±8.36aA 6.73±0.41aA 29.46±5.17aA 16.54±1.26aA 49.03±5.48aA 11.62±2.62aA

Table 4

Effects of different treatment combinations on agronomic traits and yield of spring wheat"

处理
Treatment
株高
Plant height (cm)
穗长
Spike length (cm)
穗粒数
Grains per spike
总小穗数
Total spikelet
千粒重
1000-grain weight (g)
产量(g/盆)
Grain yield (g/pot)
A1B1 46.43dCD 6.43defCDE 21.07bB 17.23abcABC 45.30cdBC 7.47cC
A1B2 49.00dC 6.10fE 21.90bB 17.23abcABC 44.77dBC 7.83cC
A1B3 48.73dC 6.33efDE 21.17bB 17.00abcABC 48.33cB 8.27cC
A2B1 57.80bcB 7.27aA 33.27aA 18.23aA 53.77bA 14.30aA
A2B2 58.43bcB 6.97abcABCD 32.00aA 17.93aA 56.30abA 14.43aA
A2B3 57.27cB 7.23aAB 33.10aA 17.83abAB 57.57aA 15.23aA
A3B1 64.03aA 7.10abABC 31.20aA 15.07dD 44.23dBC 11.07bB
A3B2 61.67abAB 7.00abcABCD 31.70aA 15.27dD 43.70dC 11.10bB
A3B3 58.20bcB 6.83abcdeABCD 31.93aA 15.17dD 44.30dBC 11.30bB
A4B1 41.77eDE 6.87abcdABCD 30.77aA 16.07cdCD 45.90cdBC 11.30bB
A4B2 41.17eE 6.63bcdeABCDE 31.73aA 16.67bcABCD 45.27cdBC 11.50bB
A4B3 38.70eE 6.53cdefBCDE 31.63aA 16.17cdBCD 45.93cdBC 11.67bB

Table 5

Protein contents differences among different spring wheat varieties %"

品种Variety 总蛋白质Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin
A1 16.26±1.04bB 3.61±0.22bB 1.93±0.09bB 4.44±0.46abAB 5.95±0.39cB
A2 15.27±0.38cC 3.45±0.12cB 2.13±0.08aA 4.35±0.30bcAB 5.06±0.31dC
A3 18.20±0.94aA 3.92±0.20aA 2.09±0.10aA 4.66±0.28aA 6.73±0.27aA
A4 16.43±0.79bB 3.51±0.11bcB 2.08±0.17aA 4.11±0.15cB 6.41±0.32bA

Table 6

Effects of nitrogen application amount on protein contents of spring wheat %"

处理Treatment 总蛋白质Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin
B1 16.29±1.18bB 3.58±0.18bA 2.07±0.16abA 4.29±0.27aA 5.95±0.83aA
B2 16.30±1.21bB 3.59±0.22bA 2.01±0.13bA 4.40±0.32aA 5.96±0.69aA
B3 17.03±1.55aA 3.70±0.31aA 2.10±0.11aA 4.47±0.48aA 6.20±0.63aA

Table 7

Effects of different treatment combinations on protein contents of spring wheat %"

处理Treatment 总蛋白质Total protein 清蛋白Albumin 球蛋白Globulin 醇溶蛋白Prolamin 谷蛋白Glutelin
A1B1 15.55±0.91efEF 3.50±0.27cdCDE 1.94±0.07cdCD 4.12±0.42cdBC 5.73±0.33deCDE
A1B2 15.97±0.87defCDEF 3.51±0.10cdCDE 1.85±0.08dD 4.43±0.54abcdABC 5.95±0.52cdBCD
A1B3 17.25±0.64bcBCD 3.82±0.10bABC 2.00±0.06bcdBCD 4.77±0.28abAB 6.18±0.29bcdABC
A2B1 15.02±0.08fF 3.53±0.13cdCDE 2.16±0.10abABC 4.26±0.04bcdABC 4.80±0.14fF
A2B2 15.45±0.51efF 3.48±0.09dCDE 2.15±0.08abABC 4.52±0.21abcABC 5.07±0.37fEF
A2B3 15.34±0.41efF 3.34±0.04dE 2.08±0.06abcABC 4.26±0.49bcdABC 5.32±0.16efDEF
A3B1 17.52±0.61bBC 3.74±0.15bcBCD 2.03±0.08bcABCD 4.58±0.24abcABC 6.67±0.20abAB
A3B2 17.91±0.75bAB 3.92±0.13abAB 2.04±0.04bcABCD 4.51±0.30abcABC 6.60±0.35abAB
A3B3 19.18±0.59aA 4.11±0.13aA 2.20±0.03aAB 4.89±0.22aA 6.93±0.17aA
A4B1 17.06±0.11bcdBCDE 3.56±0.12cdCDE 2.24±0.19aA 4.22±0.00cdABC 6.62±0.28abAB
A4B2 15.87±1.05efDEF 3.44±0.11dDE 1.98±0.09cdCD 4.14±0.04cdBC 6.22±0.39bcdABC
A4B3 16.36±0.54cdeBCDEF 3.53±0.18cdCDE 2.00±0.12bcdBCD 3.97±0.21dC 6.39±0.23abcABC
[1] 赵广才, 常旭虹, 王德梅, 等. 小麦生产概况及其发展. 作物杂志, 2018(4):1-7.
[2] 邵丽伟. 论土壤与营养元素对小麦品质的影响. 南方农机, 2020(2):55.
[3] Foulkes M J, Hawkesford M J, Barraclough P B, et al. Identifying traits to improve the nitrogen economy of wheat:recent advances and future prospects. Field Crops Research, 2009, 114(3):329-342.
doi: 10.1016/j.fcr.2009.09.005
[4] Bradley R S, Scott R. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertiliser nitrogen. Journal of Agricultural Science, 1998, 130(1):29-44.
[5] Anon. Effects of plant density on grain yield,protein size distribution,and breadmaking quality of winter wheat grown under two nitrogen fertilisation rates. European Journal of Agronomy, 2016, 73:1-10.
doi: 10.1016/j.eja.2015.11.015
[6] 王安邦, 顾正中, 周羊梅, 等. 播期与氮肥用量及运筹对“淮麦39”产量和品质的影响试验. 上海农业科技, 2020(2):33-34,68.
[7] 张秀, 朱文美, 代兴龙, 等. 施氮量对强筋小麦产量、氮素利用率和品质的影响. 麦类作物学报, 2018, 38(8):963-969.
[8] 柏慧, 张秀, 初金鹏, 等. 氮肥水平对强筋小麦产量和氮素利用的影响. 中国农学通报, 2020(4):7-14.
[9] 魏凤珍, 李金才, 屈会娟, 等. 氮肥运筹模式对不同穗型冬小麦籽粒产量和品质调控效应的研究. 中国粮油学报, 2009, 24(1):11-15.
[10] 马尚宇, 王艳艳, 刘雅男, 等. 播期、播量和施氮量对小麦干物质积累、转运和分配及产量的影响. 中国生态农业学报(中英文), 2020, 28(3):375-385.
[11] 郭明明, 赵广才, 郭文善, 等. 追氮时期和施钾量对小麦氮素吸收运转的调控. 植物营养与肥料学报, 2016, 22(3):590-597.
[12] Wang H, Mccaig T N, Depauw R M, et al. Physiological characteristics of recent Canada Western Red Spring wheat cultivars:Components of grain nitrogen yield. Canadian Journal of Plant Science, 2003, 83(4):699-707.
doi: 10.4141/P02-166
[13] 李亚静, 郭振清, 杨敏, 等. 施氮量对强筋小麦氮素积累和氮肥农学利用效率的影响. 麦类作物学报, 2020, 40(3):343-350.
[14] 吴培金, 闫素辉, 邵庆勤, 等. 施氮量对弱筋小麦籽粒品质形成的影响. 麦类作物学报, 2020, 40(10):1-7.
[15] 杨延兵, 高荣岐, 尹燕枰, 等. 氮素与品种对小麦产量和品质性状的效应. 麦类作物学报, 2005, 25(6):86-89.
[16] 张定一, 党建友, 王姣爱, 等. 施氮量对不同品质类型小麦产量、品质和旗叶光合作用的调节效应. 植物营养与肥料学报, 2007, 13(4):535-542.
[17] 陆增根, 戴廷波, 姜东, 等. 不同施氮水平和基追比对弱筋小麦籽粒产量和品质的影响. 麦类作物学报, 2006, 26(6):75-80.
[18] Martre P, Porter J R, Jamieson P D. Modeling grain nitrogen accumulation and protein composition to understand the Sink/ Source regulations of nitrogen remobilization for wheat. Plant Physiology, 2003, 133(4):1959-1967.
doi: 10.1104/pp.103.030585
[19] 张冀涛, 李硕碧, 张联会. 不同栽培条件与小麦籽粒品质的关系. 干旱地区农业研究, 1991(2):16-21.
[20] 赵广才, 常旭虹, 刘利华, 等. 施氮量对不同强筋小麦产量和加工品质的影响. 作物学报, 2006, 32(5):723-727.
[1] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[2] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[3] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[4] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[5] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[6] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[7] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[8] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[9] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[10] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[11] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[12] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[13] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[14] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[15] Chen Zhongcheng, Jin Xijun, Li He, Zhou Weixin, Qiang Binbin, Liu Jia, Zhang Yuxian. Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean [J]. Crops, 2021, 37(6): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!