Crops ›› 2022, Vol. 38 ›› Issue (1): 205-212.doi: 10.16035/j.issn.1001-7283.2022.01.031

Previous Articles     Next Articles

Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108

Li Runqing(), Shen Yong, Zhu Kuanyu(), Wang Zhiqin, Yang Jianchang   

  1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2021-07-28 Revised:2021-08-17 Online:2022-02-15 Published:2022-02-16
  • Contact: Zhu Kuanyu E-mail:lirunqing12@163.com;1659855942@qq.com

Abstract:

In order to elucidate the effects of nitrogen application rates on rapid visco analyzer (RVA) profile characteristics of rice and the structure and physicochemical properties of rice starch, a super rice variety Nanjing 9108 was used and grown in the paddy field under three nitrogen application rates of 0 (N0), 180 (N180) and 360kg N/ha (N360). The relationships between structure and physicochemical properties of starch and eating quality were investigated. Results showed that grain yields of Nanjing 9108 were significantly increased under N180 and N360 treatments, whereas the result was reversed in nitrogen use efficiency in comparison to N0. Compared with the N0 treatment, the RVA profile characteristics of Nanjing 9108, breakdown value, hot paste viscosity, peak viscosity, pasing temperature and gel consistency were increased, while the setback value and amylose content were decreased, as well as the mid-short chain content of amylopectin, starch disordered structure, solubility and swelling degree were increased, the enthalpy value and crystallinity were decreased under N180 treatment, whereas the results were reversed in a high N application rate (N360). Correlation analysis showed that short-mid chain content of amylopectin was positively correlated with breakdown value, starch disordered structure, solubility and swelling degree (P < 0.05 or P < 0.01), whereas negatively correlated with enthalpy value, crystallinity and setback value (P < 0.05 or P < 0.01). The results suggested that the optimized amylopectin structure and starch physicochemical properties accounted for the better RVA profile characteristics of Nanjing 9108 under 180kg N/ha, which was conductive to a better cooking and eating quality.

Key words: Super rice, Nitrogen application rate, Yield, Cooking and eating quality, Physicochemical properties of starch, Amylopectin structure

Table 1

Yield and its components of Nanjing 9108 under different nitrogen application rates"

处理
Treatment
产量
Yield (t/hm2)
穗数(穗/m2
Panicle (panicle/m2)
穗粒数
Grains per panicle
总颖花量
Total spikelets (×103/m2)
结实率
Filled grain percentage (%)
千粒重
1000-grain weight (g)
N0 6.26c 233c 116c 26.9c 83.7a 27.2a
N180 9.16b 288b 150b 43.2b 80.4b 27.5a
N360 10.40a 316a 158a 47.5a 78.7c 27.2a

Table 2

Nitrogen uptake and nitrogen use efficiency of Nanjing 9108 under different nitrogen application rates"

处理
Treatment
总吸氮量
Total N uptake (kg/hm2)
氮肥农学利用率
AEN (kg/kg)
氮肥偏生产力
PFPN (kg/kg)
氮素产谷利用率
IEN (kg/kg)
氮素收获指数
HIN (%)
N0 95.7c 65.5a 66.9a
N180 164.0b 15.6a 50.4a 55.4b 60.6b
N360 197.0a 11.2b 28.6b 52.6c 55.1c

Table 3

Protein content, amylose content and gel consistency of Nanjing 9108 under different nitrogen application rates"

处理
Treatment
蛋白质含量
Protein content
(%)
直链淀粉含量
Amylose content
(%)
胶稠度
Gel consistency
(mm)
N0 7.44c 15.8a 78.9b
N180 9.84b 14.6b 83.6a
N360 10.60a 13.8b 79.8b

Table 4

RVA profile characteristics of starch of Nanjing 9108 grains under different nitrogen application rates"

处理
Treatment
峰值黏度
Peak viscosity (cP)
热浆黏度
Hot paste viscosity (cP)
崩解值
Breakdown viscosity (cP)
消减值
Setback viscosity (cP)
峰值时间
Peak time (min)
糊化温度
Pasing temperature (℃)
N0 2620b 1587b 1033b 171b 5.93a 72.25c
N180 2711a 1597a 1114a 153c 5.93a 75.65a
N360 2568c 1539c 1029b 178a 5.93a 75.45b

Table 5

Crystallinity and IR values of Nanjing 9108 starch under different nitrogen application rates"

处理
Treatment
结晶度
Crystallinity (%)
傅里叶变换红外光谱值IR value
1045/1022cm-1 1022/995cm-1
N0 23.5a 0.558b 1.21b
N180 23.1b 0.519c 1.29a
N360 23.8a 0.586a 1.15c

Table 6

Thermodynamic characteristic values of Nanjing 9108 starch under different nitrogen application rates"

处理
Treatment
起始温度
Onset
temperature (℃)
峰值温度
Peak
temperature (℃)
终止温度
Conclusion
temperature (℃)
糊化焓
Enthalpy of
gelatinization (J/g)
回生焓
Enthalpy of
regenerative(J/g)
回生度
Degree of
regeneration (%)
N0 66.6a 62.2b 74.9ab 8.24b 2.56b 0.314b
N180 66.8a 62.7a 75.6a 7.49c 2.71a 0.339a
N360 66.9a 60.9c 74.3b 8.78a 2.51c 0.285c

Table 7

Solubility and expansion of Nanjing 9108 starch under different nitrogen application rates"

处理
Treatment
溶解度
Solubility (%)
膨胀度
Swelling degree (g/g)
N0 19.5b 21.4b
N180 20.2a 22.6a
N360 16.3c 19.7c

Table 8

Different chain length distribution ratio of Nanjing 9108 amylopectin under different nitrogen application rates %"

处理
Treatment
A链
A chain
B1链
B1 chain
B2链
B2 chain
B3链
B3 chain
A+B1链
A+B1 chain
B2+B3链
B2+B3 chain
N0 30.1b 46.8b 9.62b 13.3a 77.0a 22.9b
N180 31.4a 47.2a 9.54b 13.1a 77.4a 22.6b
N360 28.9c 46.3b 10.10a 13.4a 75.3b 23.4a

Table 9

Correlation analysis between starch crystal stability and physicochemical properties of starch in Nanjing 9108 grains"

指标
Index
崩解值
Breakdown viscosity
消减值
Setback viscosity
糊化焓
Enthalpy of gelatinization
糊化温度
Pasing temperature
溶解度
Solubility
膨胀度
Swelling degree
结晶度Crystallinity -0.882* 0.872* 0.973** 0.993** -0.984** -0.993**
1045/1022cm-1 -0.842* 0.788 0.979** 0.969** -0.959** -0.989**
1022/995cm-1 0.826* -0.935** -0.968** -0.925** 0.683 0.923**

Table 10

Correlation analysis between the distribution of amylopectin debranching chain length and the physicochemical properties of starch in Nanjing 9108 grains"

指标
Index
结晶度
Crystallinity
1045/1022cm-1 1022/995cm-1 崩解值
Breakdown
viscosity
消减值
Setback
viscosity
糊化焓
Enthalpy of
gelatinization
糊化温度
Pasing
temperature
溶解度
Solubility
膨胀度
Swelling
degree
A链含量A-chain content -0.923** -0.863* 0.798* 0.917* -0.847* -0.995** -0.974** 0.980** 0.991**
B1链含量B1- chain content -0.976** -0.969** 0.944** 0.932* -0.815* -0.994** -0.976** 0.948** 0.979**
B2链含量B2- chain content 0.976** 0.936** -0.856* -0.989** 0.685 0.963** 0.964** -0.986** -0.994**
B3链含量 B3-chain content 0.936** 0.943** -0.923** -0.815* 0.703 0.962** 0.946** -0.806* -0.858*
[1] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12(1):3-8.
doi: 10.1626/pps.12.3
[2] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探. 中国农业科学, 2014, 47(7):1273-1289.
[3] Peng S B, Khush G S, Virk P. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108(1):32-38.
doi: 10.1016/j.fcr.2008.04.001
[4] Zhu K Y, Zhou Q, Shen Y, et al. Agronomic and physiological performance of an indica-japonica rice variety with a high yield and high nitrogen use efficiency. Crop Science, 2020, 60(3):1556-1568.
doi: 10.1002/csc2.v60.3
[5] Cheng S H, Zhuang J Y, Fan Y Y, et al. Progress in research and development on hybrid rice:a super-domesticate in China. Annals of Botany, 2007, 100(5):959-966.
doi: 10.1093/aob/mcm121
[6] 张超普, 余四斌, 张启发. 绿色超级稻新品种选育研究进展. 生命科学, 2018, 30(10):1083-1089.
[7] Zhu D W, Zhang H C, Guo B W, et al. Effects of nitrogen level on yield and quality of japonica soft super rice. Journal of Integrative Agriculture, 2017, 16(5):42-51.
[8] Wang F, Peng S B. Yield potential and nitrogen use efficiency of China’s super rice. Journal of Integrative Agriculture, 2017, 16(5):1000-1008.
doi: 10.1016/S2095-3119(16)61561-7
[9] 赵春芳, 岳红亮, 黄双杰, 等. 南粳系列水稻品种的食味品质与稻米理化特性. 中国农业科学, 2019, 52(5):909-920.
[10] Chen H, Li Q P, Zeng Y L, et al. Effect of different shading materials on grain yield and quality of rice. Scientific Reports, 2019, 9(1):8129-8133.
doi: 10.1038/s41598-019-44634-0
[11] 刘秋员, 周磊, 田晋钰, 等. 长江中下游地区常规中熟粳稻产量、品质及氮素吸收性状的相互关系分析. 作物学报, 2021, 47(5):904-914.
doi: 10.3724/SP.J.1006.2021.02050
[12] 朱正斌, 杨勇, 冯琳皓, 等. 太湖地区地方特色糯稻品种鸭血糯和苏御糯稻米理化特性研究. 作物杂志, 2020(4):91-98.
[13] Zhang C Q, Chen S J, Ren X Y, et al. Molecular structure and physicochemical properties of starches from rice with different amylose contents resulting from modification of OsGBSSI activity. Journal of Agriculture and Food Chemistry, 2017, 65(10):2222-2232.
doi: 10.1021/acs.jafc.6b05448
[14] 杨静, 刘彦伶, 吴良欢, 等. 传统水作及覆膜旱作下包膜控释尿素对水稻产量及氮肥利用率的影响. 浙江农业学报, 2012, 24(3):368-372.
[15] 王艳, 崔晶, 王小波, 等. 施肥对中日水稻品系土壤养分及食味品质的影响. 中国生态农业学报, 2010, 18(2):286-289.
[16] 贺晓鹏, 朱昌兰, 刘玲珑, 等. 不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系. 作物学报, 2010, 36(2):276-284.
[17] Chung H J, Liu Q, Lee L, et al. Relationship between the structure,physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocolloids, 2011, 25(5):968-975.
doi: 10.1016/j.foodhyd.2010.09.011
[18] Gu J F, Chen J, Chen L, et al. Grain quality changes and responses to nitrogen fertilizer of japonica rice cultivars released in the Yangtze River Basin from the 1950s to 2000s. The Crop Journal, 2015, 3(4):285-297.
doi: 10.1016/j.cj.2015.03.007
[19] Syahariza Z A, Li E P, Hasjim J. Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydrate Polymers, 2010, 82(1):14-20.
doi: 10.1016/j.carbpol.2010.04.014
[20] Tran T T B, Shelat K J, Tang D, et al. Milling of rice grains. The degradation on three structural levels of starch in rice flour can be independently controlled during grinding. Journal of Agricultural and Food Chemistry, 2011, 59(8):3964-3973.
doi: 10.1021/jf105021r
[21] Li H Y, Fitzgerald M A, Prakash S, et al. The molecular structural features controlling stickiness in cooked rice,a major palatability determinant. Scientific Reports, 2017, 7:43713.
doi: 10.1038/srep43713
[22] Zhang H, Jing W J, Xu J J, et al. Changes in starch quality of mid-season indica rice varieties in the lower reaches of the Yangtze River in last 80 years. Journal of Integrative Agriculture, 2020, 19(12):2983-2996.
doi: 10.1016/S2095-3119(20)63431-1
[23] Hermans P H, Weidinger A. Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. Journal of Applied Physics, 1948, 19(5):491-506.
doi: 10.1063/1.1698162
[24] Wu A C, Li E P, Gilbert R G. Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydrate Polymers, 2014, 114:36-42.
doi: 10.1016/j.carbpol.2014.08.001
[25] 陈丽, 马静, 亢玲, 等. 杂草稻稻米RVA谱特征值与外观品质及蒸煮食味品质性状的相关性分析. 宁夏农林科技, 2020, 61(6):1-4.
[26] Xue Y G, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013, 53(1):271-284.
doi: 10.2135/cropsci2012.06.0360
[27] 付鹏浩. 氮肥运筹对大穗型水稻颖花分化、籽粒灌浆和产量的影响及机理. 武汉:华中农业大学, 2020.
[28] 陈建珍. 大穗型水稻品种的物质生产、灌浆及结实稳定性研究. 荆州:长江大学, 2016.
[29] 白羽. 施氮水平对大穗型水稻品种籽粒灌浆结实的影响及其机制. 南京:南京农业大学, 2012.
[30] 帅鹏. 不同氮肥水平下超级杂交稻与普通杂交稻农艺表现的比较研究. 武汉:华中农业大学, 2019.
[31] 付景, 王志琴, 袁莉民, 等. 施氮量对超级稻产量和一些生理性状的影响. 中国水稻科学, 2014, 28(4):391-400.
[32] 熊飞, 王忠, 顾蕴洁, 等. 施氮时期对扬稻6号颖果发育及稻米品质的影响. 中国水稻科学, 2007, 6(13):637-642.
[33] 陈培峰, 董明辉, 顾俊荣, 等. 麦秸还田与氮肥运筹对超级稻强弱势粒粒重与品质的影响. 中国水稻科学, 2012, 26(6):715-722.
[34] 许仁良, 戴其根, 霍中洋, 等. 施氮量对水稻不同品种类型稻米品质的影响. 扬州大学学报, 2005(1):66-68.
[35] 李运祥, 王忠, 顾蕴洁, 等. 施氮处理对稻米淀粉积累的影响. 南京师大学报(自然科学版), 2003(3):68-71.
[36] 刘立军, 李鸿伟, 赵步洪, 等. 结实期干湿交替处理对稻米品质的影响及其生理机制. 中国水稻科学, 2012, 26(1):77-84.
[37] 范名宇, 王晓菁, 王旭虹, 等. 稻米支链淀粉结构的研究进展. 中国水稻科学, 2017, 31(2):124-132.
[38] Champagne E T, Bett-Garber K L, Thompson J, et al. Effects of drain and harvest dates on rice sensory and physicochemical properties. Cereal Chemistry, 2005, 82(4):369-374.
doi: 10.1094/CC-82-0369
[39] Li H Y, Gilbert R G. Starch molecular structure:The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018, 195:9-17.
doi: 10.1016/j.carbpol.2018.04.065
[40] 彭小松, 朱昌兰, 王方, 等. 籼粳杂种后代支链淀粉结构及其与稻米糊化特性相关性分析. 核农学报, 2014, 28(7):1219-1225.
[41] María B A, Amaury T R, Antonio L G, et al. Quick cooking rice by high hydrostatic pressure processing. LWT - Food Science and Technology, 2013, 51(1):196-204.
doi: 10.1016/j.lwt.2012.09.021
[42] 王丹英, 徐春梅, 褚光, 等. 水稻高产与优质栽培的冲突与协调. 中国稻米, 2021, 4(4):1-5.
[43] 闫湘. 我国化肥利用现状与养分资源高效利用研究. 北京:中国农业科学院, 2008.
[44] 刘郁, 于亚辉, 桑海旭, 等. 滨海稻区中日水稻品质食味比较分析. 中国稻米, 2019, 25(3):53-56.
[45] 包劲松. 稻米淀粉品质遗传与改良研究进展. 分子植物育种, 2007, 5(6):1-20.
[46] 剧成欣, 陈尧杰, 赵步洪, 等. 实地氮肥管理对不同氮响应粳稻品种产量和品质的影响. 中国水稻科学, 2018, 32(3):237-246.
[47] 刘立军, 吴长付, 张耗, 等. 实地氮肥管理对稻米品质的影响. 中国水稻科学, 2007, 4(6):625-630.
[48] 杨建昌, 袁莉民, 唐成, 等. 结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响. 作物学报, 2005, 4(8):1052-1057.
[49] Zhang H, Hou D P, Peng X L, et al. Optimizing integrative cultivation management improves grain quality while increasing yield and nitrogen use efficiency in rice. Journal of integrative Agriculture, 2019, 18(12):2716-2731.
doi: 10.1016/S2095-3119(19)62836-4
[50] 徐国伟. 种植方式、秸秆还田与实地氮肥管理对水稻产量与品质的影响及其生理的研究. 扬州:扬州大学, 2007.
[51] 郝建华. 麦秸还田对水稻产量和品质形成及土壤特性的影响. 南京:南京农业大学, 2009.
[52] 剧成欣. 不同水稻品种对氮素响应的差异及其农艺生理性状. 扬州:扬州大学, 2017.
[53] 梁健, 吕修涛, 冯宇鹏, 等. 我国超级稻发展现状及建议. 中国稻米, 2020, 26(3):1-4.
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[3] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[4] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[5] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[6] Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153.
[7] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[8] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[9] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[10] Wang Qingbin, Lu Jiechun, Peng Chun’e, Meng Hui, Liu Zhiguo, Wang Hongfeng, Zhang Min. Effects of Different Nitrogen Application Rates Combined with Extracts of Paecilomyces variotii (ZNC) on Growth and Nitrogen Uptake of Pakchoi [J]. Crops, 2022, 38(1): 190-195.
[11] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[12] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[13] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[14] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[15] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!