Crops ›› 2022, Vol. 38 ›› Issue (2): 81-88.doi: 10.16035/j.issn.1001-7283.2022.02.012
Previous Articles Next Articles
Zhao Kai(), Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen()
[1] | 孙玉莹, 毕京翠, 赵志超, 等. 作物叶片衰老研究进展. 作物杂志, 2013(4):11-19. |
[2] |
Navabpour S, Morris K, Allen R, et al. Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 2003, 54(391):2285-2292.
pmid: 12947053 |
[3] |
Hendry G A F, Houghton J D, Brown S B. The degradation of chlorophyll-a biological enigma. New Phytologist, 1987, 107(2):255-302.
doi: 10.1111/j.1469-8137.1987.tb00181.x |
[4] | 李根, 张成, 王强, 等. 植物叶绿素代谢途径及其分子调控. 四川农业科技, 2021(4):41-45. |
[5] |
丁跃, 吴刚, 郭长奎. 植物叶绿素降解机制研究进展. 生物技术通报, 2016, 32(11):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001 |
[6] | 陈俊毅, 朱晓宇, 蒯本科. 绿色器官衰老进程中叶绿素降解代谢及其调控的研究进展. 植物生理学报, 2014, 50(9):1315-1321. |
[7] | Suzuki T, Kunieda T, Murai F, et al. Mg-dechelation activity in radish cotyledons with artificial and native substrates,Mg-chlorophyllin a and chlorophyllide a. Plant Physiolgy and Biochemistry, 2005, 43(5):459-464. |
[8] |
Schelbert S, Aubry S, Burla B, et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell, 2009, 21(3):767-785.
doi: 10.1105/tpc.108.064089 |
[9] |
Harpaz-Saad S, Azoulay T, Arazi T, et al. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 2007, 19(3):1007-1022.
pmid: 17369368 |
[10] |
Morita R, Sato Y, Masuda Y, et al. Defect in non-yellow coloring 3,an α/β hydrolase-fold family protein,causes a stay-green phenotype during leaf senescence in rice. Plant Journal, 2009, 59(6):940-952.
doi: 10.1111/j.1365-313X.2009.03919.x |
[11] |
Guyer L, Hofstetter S S, Christ B, et al. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiology, 2014, 166(1):44-56.
doi: 10.1104/pp.114.239541 |
[12] |
Vijayalakshmi K, Fritz A K, Paulsen G M, et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 2010, 26(2):163-175.
doi: 10.1007/s11032-009-9366-8 |
[13] | Moser S, Müller T, Oberhuber M, et al. Chlorophyll catabolites-chemical and structural footprints of a fascinating biological phenomenon. European Journal of Organic Chemistry, 2009(1):21-31. |
[14] | 唐蕾, 毛忠贵. 植物叶绿素降解途径及其分子调控. 植物生理学报, 2011, 47(10):936-942. |
[15] |
Takamiya K I, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll:what has gene cloning revealed?. Trends in Plant Science, 2000, 5(10):426-431.
pmid: 11044719 |
[16] |
Hirschfeld K R, Goldschmidt E E. Chlorophyllase activity in chlorophyll-free citrus chromoplasts. Plant Cell Reports, 1983, 2(3):117-118.
doi: 10.1007/BF00269332 pmid: 24257977 |
[17] | Okazawa A, Tango L, Itoh Y, et al. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 2006, 61(1/2):111-117. |
[18] |
Schenk N, Schelbert S, Kanwischer M, et al. The chlorophyllases AtCLH1 and AtCLH 2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. Febs Letters, 2007, 581(28):5517-5525.
doi: 10.1016/j.febslet.2007.10.060 |
[19] | Hörtensteiner S, Kräutler B. Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta-Biomembranes, 2011, 1807:977-988. |
[20] | Hu X, Makita S, Schelbert S, et al. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiolgy, 2015, 167(3):660-670. |
[21] | Ren G, Zhou Q, Wu S, et al. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. Journal of Integrative Plant Biology, 2009, 52(5):496-504. |
[22] |
Tian Y N, Zhong R H, Wei J B, et al. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in Photosystem II repair. Molecular Plant, 2021, 14(7):1149-1167.
doi: 10.1016/j.molp.2021.04.006 |
[23] |
Chen C M, Yang J H, Liu C H, et al. Molecular,structural,and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa. Plant Systematics and Evolution, 2014, 300(4):633-643.
doi: 10.1007/s00606-013-0908-5 |
[24] |
Tanaka K, Kakuno T, Yamashita J, et al. Purification and properties of chlorophyllase from greened rye seedlings. Journal of Biochemistry, 1982, 92(6):1763-1773.
pmid: 6819291 |
[25] |
Majumdar S, Ghosh S, Glick B R, et al. Activities of chlorophyllase,phosphoenolpyruvate carboxylase and ribulose‐1,5‐bisphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiologia Plantarum, 1991, 81(4):473-480.
doi: 10.1111/j.1399-3054.1991.tb05087.x |
[1] | Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112. |
[2] | Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126. |
[3] | Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133. |
[4] | Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142. |
[5] | Yan Xiaocui, Duan Zhenying, Yang Huali, Yao Zhanjun, Li Zaifeng. QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22 [J]. Crops, 2022, 38(2): 69-74. |
[6] | Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10. |
[7] | Yang Cheng, Du Simeng, Zhang Deqi, Shi Yanhua, Li Xiangdong, Shao Yunhui, Fang Baoting, Wang Hanfang. Evaluation of Wheat Freezing Damage during Overwintering Period Based on Chlorophyll Fluorescence [J]. Crops, 2022, 38(1): 154-160. |
[8] | Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173. |
[9] | Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43. |
[10] | Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64. |
[11] | Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83. |
[12] | Ge Changbin, Zhang Hongtao, Liao Ping’an, Cao Yanyan, Huang Jie, Qiao Jiliang, Guo Chunqiang, Wang Jun, Qin Suyan, Zhang Lan, Xia Mingcong, Cheng Bin, Zhang Liyi. Evaluation of Resistance to Fusarium Head Blight and Analysis of Agronomic Traits in Guixie 3-Derived Wheat Varieties (Lines) [J]. Crops, 2022, 38(1): 96-101. |
[13] | Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114. |
[14] | Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121. |
[15] | Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151. |
|