Crops ›› 2022, Vol. 38 ›› Issue (2): 81-88.doi: 10.16035/j.issn.1001-7283.2022.02.012

Previous Articles     Next Articles

The Role of Wheat Deplantation-Related Genes in Degradation of Chlorophyll in Spring Wheat Leaves

Zhao Kai(), Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen()   

  1. College of Agricultural, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
  • Received:2021-10-14 Revised:2021-12-30 Online:2022-04-15 Published:2022-04-24
  • Contact: Sun Daizhen E-mail:zk51712@163.com;sdz64@126.com

Abstract:

Leaf senescence of wheat leads to yield loss, and chlorophyll degradation is an important feature of wheat leaf senescence. The purpose of this study is to explore the role of chlorophyll degradation-related genes chlorophyllase (TaCLH) and pheophytin pheophorbide hydrolase (TaPPH) in the senescence process of spring wheat leaves, and to provide a reference for analyzing the molecular mechanism of chlorophyll degradation in wheat. Ten spring wheats were used as test materials. The relative expression of TaCLH and TaPPH in the flag leaves during the aging process were measured, the relative chlorophyll content (SPAD value) and functional leaf area (GLAD) of different wheat varieties at different stages after anthesis as well as the changes in chlorophyll fluorescent parameters were analyzed to explore the correlation between TaCLH and TaPPH with SPAD, GLAD and chlorophyll fluorescent parameters during leaf senescence. The results showed that there were extremely significant negative correlations between TaPPH relative expression level with SPAD, GLAD and chlorophyll fluorescence parameters [ETR, Fv/Fm, Y(II)], and there was a highly significant positive correlation between the relative expression levels of TaCLH and TaPPH. This indicated that TaPPH played a major regulatory role in the flag leaf senescence process after anthesis in spring wheat.

Key words: Wheat, Chlorophyll, Fluorescence parameters, TaCLH, TaPPH, Gene expression

Fig. 1

Dynamic changes of SPAD and GLAD values of flag leaves on main stem of different spring wheat varieties after anthesis"

Table 1

Aging characteristic parameters based on SPAD and GLAD values in different spring wheats after anthesis"

指标
Index
品种
Variety
特征参数Characteristic parameter
MRS TMRS (d) Ts (d) T0 (d)
SPAD 晋麦2148 5.48ab 23.97ef 15.60ab 27.07d
宁春13号 4.38bc 24.90cdef 14.21ab 28.88cd
内麦19号 3.62cd 23.72f 11.79bc 28.22cd
博爱7023 5.02bcd 26.01bc 16.56a 29.51abc
生选3号 5.39ab 25.46cd 16.78a 28.67bcd
川麦22 6.72a 27.31a 19.11a 30.34a
绵阳15号 4.51bcd 27.10ab 17.17a 30.77a
新春8号 3.93cd 25.56cd 12.54bc 30.48a
宁春4号 3.58cd 24.59def 11.08c 29.77abc
青春5号 3.44d 25.22cde 12.72bc 29.92ab
GLAD值
GLAD value
晋麦2148 0.74a 27.28abc 15.78a 31.55abc
宁春13号 0.75a 28.16a 16.68a 32.42ab
内麦19号 0.80a 27.16abc 16.58a 31.09abc
博爱7023 0.85a 24.57ef 14.59a 28.27bc
生选3号 0.76a 23.94f 13.15a 27.97c
川麦22 0.66a 27.29ab 13.89a 32.32a
绵阳15号 0.60a 27.18ab 13.69a 32.25a
新春8号 0.70a 26.33bcd 13.94a 30.97abc
宁春4号 0.62a 25.73cde 12.13a 30.90abc
青春5号 0.65a 25.59de 12.29a 30.63abc

Fig.2

The systematic clustering diagram of different spring wheat based on SPAD values"

Table 2

Aging characteristic parameters based on SPAD and GLAD values in three groups of wheat"

指标
Index
类群
Group
特征参数Characteristic parameter
MRS TMRS (d) Ts (d) T0 (d)
SPAD 5.42 25.97 17.04 29.27
3.64 24.77 12.03 29.60
4.38 24.90 14.21 28.88
GLAD值
GLAD value
0.79 26.79 15.91 30.83
0.73 25.14 13.55 29.47
0.63 26.45 13.00 31.53

Fig.3

The systematic clustering diagram of different spring wheat based on GLAD values"

Fig.4

Dynamic changes of chlorophyll fluorescence parameters of flag leaves on main stem of different spring wheat varieties after anthesis"

Fig.5

Dynamic changes of chlorophyll fluorescence parameters of flag leaves in different postanthesis stages of two types of wheats"

Fig.6

Dynamic changes of TaCLH and TaPPH gene relative expression level of flag leaves on main stem of different spring wheat varieties after postanthesis"

Table 3

Correlation coefficients of traits"

指标Index Y(II) Fv/Fm ETR qP GLAD值GLAD value SPAD TaCLH TaPPH
Y(II) 1
Fv/Fm 0.952** 1
ETR 0.919** 0.928** 1
qP 0.063 0.014 0.083 1
GLAD 0.919** 0.914** 0.840** 0.054 1
SPAD 0.913** 0.945** 0.893** 0.010 0.905** 1
TaCLH -0.075 -0.076 -0.006 0.100 -0.061 -0.089 1
TaPPH -0.587** -0.564** -0.450** 0.121 -0.591** -0.575** 0.391** 1
[1] 孙玉莹, 毕京翠, 赵志超, 等. 作物叶片衰老研究进展. 作物杂志, 2013(4):11-19.
[2] Navabpour S, Morris K, Allen R, et al. Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 2003, 54(391):2285-2292.
pmid: 12947053
[3] Hendry G A F, Houghton J D, Brown S B. The degradation of chlorophyll-a biological enigma. New Phytologist, 1987, 107(2):255-302.
doi: 10.1111/j.1469-8137.1987.tb00181.x
[4] 李根, 张成, 王强, 等. 植物叶绿素代谢途径及其分子调控. 四川农业科技, 2021(4):41-45.
[5] 丁跃, 吴刚, 郭长奎. 植物叶绿素降解机制研究进展. 生物技术通报, 2016, 32(11):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001
[6] 陈俊毅, 朱晓宇, 蒯本科. 绿色器官衰老进程中叶绿素降解代谢及其调控的研究进展. 植物生理学报, 2014, 50(9):1315-1321.
[7] Suzuki T, Kunieda T, Murai F, et al. Mg-dechelation activity in radish cotyledons with artificial and native substrates,Mg-chlorophyllin a and chlorophyllide a. Plant Physiolgy and Biochemistry, 2005, 43(5):459-464.
[8] Schelbert S, Aubry S, Burla B, et al. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. The Plant Cell, 2009, 21(3):767-785.
doi: 10.1105/tpc.108.064089
[9] Harpaz-Saad S, Azoulay T, Arazi T, et al. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell, 2007, 19(3):1007-1022.
pmid: 17369368
[10] Morita R, Sato Y, Masuda Y, et al. Defect in non-yellow coloring 3,an α/β hydrolase-fold family protein,causes a stay-green phenotype during leaf senescence in rice. Plant Journal, 2009, 59(6):940-952.
doi: 10.1111/j.1365-313X.2009.03919.x
[11] Guyer L, Hofstetter S S, Christ B, et al. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato. Plant Physiology, 2014, 166(1):44-56.
doi: 10.1104/pp.114.239541
[12] Vijayalakshmi K, Fritz A K, Paulsen G M, et al. Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature. Molecular Breeding, 2010, 26(2):163-175.
doi: 10.1007/s11032-009-9366-8
[13] Moser S, Müller T, Oberhuber M, et al. Chlorophyll catabolites-chemical and structural footprints of a fascinating biological phenomenon. European Journal of Organic Chemistry, 2009(1):21-31.
[14] 唐蕾, 毛忠贵. 植物叶绿素降解途径及其分子调控. 植物生理学报, 2011, 47(10):936-942.
[15] Takamiya K I, Tsuchiya T, Ohta H. Degradation pathway(s) of chlorophyll:what has gene cloning revealed?. Trends in Plant Science, 2000, 5(10):426-431.
pmid: 11044719
[16] Hirschfeld K R, Goldschmidt E E. Chlorophyllase activity in chlorophyll-free citrus chromoplasts. Plant Cell Reports, 1983, 2(3):117-118.
doi: 10.1007/BF00269332 pmid: 24257977
[17] Okazawa A, Tango L, Itoh Y, et al. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba. Zeitschrift Fur Naturforschung Section C-a Journal of Biosciences, 2006, 61(1/2):111-117.
[18] Schenk N, Schelbert S, Kanwischer M, et al. The chlorophyllases AtCLH1 and AtCLH 2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana. Febs Letters, 2007, 581(28):5517-5525.
doi: 10.1016/j.febslet.2007.10.060
[19] Hörtensteiner S, Kräutler B. Chlorophyll breakdown in higher plants. Biochimica et Biophysica Acta-Biomembranes, 2011, 1807:977-988.
[20] Hu X, Makita S, Schelbert S, et al. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores. Plant Physiolgy, 2015, 167(3):660-670.
[21] Ren G, Zhou Q, Wu S, et al. Reverse genetic identification of CRN1 and its distinctive role in chlorophyll degradation in Arabidopsis. Journal of Integrative Plant Biology, 2009, 52(5):496-504.
[22] Tian Y N, Zhong R H, Wei J B, et al. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in Photosystem II repair. Molecular Plant, 2021, 14(7):1149-1167.
doi: 10.1016/j.molp.2021.04.006
[23] Chen C M, Yang J H, Liu C H, et al. Molecular,structural,and phylogenetic characterization of two chlorophyllase isoforms in Pachira macrocarpa. Plant Systematics and Evolution, 2014, 300(4):633-643.
doi: 10.1007/s00606-013-0908-5
[24] Tanaka K, Kakuno T, Yamashita J, et al. Purification and properties of chlorophyllase from greened rye seedlings. Journal of Biochemistry, 1982, 92(6):1763-1773.
pmid: 6819291
[25] Majumdar S, Ghosh S, Glick B R, et al. Activities of chlorophyllase,phosphoenolpyruvate carboxylase and ribulose‐1,5‐bisphosphate carboxylase in the primary leaves of soybean during senescence and drought. Physiologia Plantarum, 1991, 81(4):473-480.
doi: 10.1111/j.1399-3054.1991.tb05087.x
[1] Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112.
[2] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
[3] Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133.
[4] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[5] Yan Xiaocui, Duan Zhenying, Yang Huali, Yao Zhanjun, Li Zaifeng. QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22 [J]. Crops, 2022, 38(2): 69-74.
[6] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[7] Yang Cheng, Du Simeng, Zhang Deqi, Shi Yanhua, Li Xiangdong, Shao Yunhui, Fang Baoting, Wang Hanfang. Evaluation of Wheat Freezing Damage during Overwintering Period Based on Chlorophyll Fluorescence [J]. Crops, 2022, 38(1): 154-160.
[8] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[9] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[10] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[11] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[12] Ge Changbin, Zhang Hongtao, Liao Ping’an, Cao Yanyan, Huang Jie, Qiao Jiliang, Guo Chunqiang, Wang Jun, Qin Suyan, Zhang Lan, Xia Mingcong, Cheng Bin, Zhang Liyi. Evaluation of Resistance to Fusarium Head Blight and Analysis of Agronomic Traits in Guixie 3-Derived Wheat Varieties (Lines) [J]. Crops, 2022, 38(1): 96-101.
[13] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[14] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[15] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!