Crops ›› 2022, Vol. 38 ›› Issue (5): 87-96.doi: 10.16035/j.issn.1001-7283.2022.05.012

Previous Articles     Next Articles

Analysis of Physiological Differences of Wheat Varieties with Different Nitrogen Use Efficiency

Li Ning1(), Liu Tongtong2, Yang Jinwen1, Shi Yugang1, Wang Shuguang1, Sun Daizhen1()   

  1. 1College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
  • Received:2021-06-10 Revised:2021-09-13 Online:2022-10-15 Published:2022-10-19

Abstract:

The dynamic changes of physiological traits such as nitrogen assimilation and transport-related enzymes in flag leaves of six wheat varieties with different nitrogen use efficiencies (NUE) (two high nitrogen use efficiency varieties, two low nitrogen use efficiency varieties and two intermediate varieties) were measured under irrigation and rain-fed conditions. The traits of nitrogen accumulation and transportation were also measured at the flowering and maturity stages. The results showed that the high NUE varieties (Jinmai 54 and Jinmai 66) had higher amounts of accumulated nitrogen after flowering (AAN), higher nitrogen utilization efficiency for grain production (NUEG), higher nitrogen utilization efficiency for biomass production (NUEB), higher nitrogen transport amount after flowering (NTTAF), higher nitrogen transport efficiency after flowering (NTEAF), higher contribution rate of grain nitrogen accumulation after flowering (CGNAF) and higher yield per plant (YPP), but lower nitrogen transport amount before flowering (NTABF), lower contribution rate of grain nitrogen accumulation before flowering (CGNBF) than other varieties. At the same time, the enzyme activities and soluble protein content of the high NUE varieties were always higher than that of the other four varieties, while the intermediate varieties were higher than that of the low NUE varieties. Correlation analysis results showed that most of the activities of enzymes were significantly or extremely significantly positively correlated with NUEG, NUEB, NTTAF, NTEAF, CGNAF and YPP, and they were significantly or extremely significantly negatively correlated with NTABF and CGNBF.

Key words: Wheat, Nitrogen use efficiency, Nitrogen assimilation, Nitrogen accumulation

Fig.1

Nitrogen accumulation and transport related traits of different wheat varieties “*”and“**”indicate significance at 0.05 and 0.01 probability levels, respectively; the left and right sides of diagonal mark“/”represent a significant difference under rain-fed and irrigation conditions, the same below"

Fig.2

Yield per plant of different wheat varieties"

Fig.3

Analysis of physiological traits of different wheat varieties"

Table 1

The correlation analysis of the nitrogen accumulation and transport related traits with soluble protein content and proteolytic enzyme activity"

环境
Environment
指标
Index
可溶性蛋白含量Soluble protein content 蛋白水解酶活性Proteolytic enzyme activity
D-7 D-14 D-21 D-28 D-35 D-7 D-14 D-21 D-28
雨养条件
Rain-fed condition
NAA 0.49 0.79* 0.68 0.62 0.82* 0.87* 0.64 0.56 0.70*
NUEg 0.80* 0.95** 0.92** 0.83* 0.93** 0.93** 0.69 0.75* 0.89*
NUEb 0.87* 0.94** 0.92** 0.89* 0.94** 0.98** 0.89* 0.91** 0.98**
NTAbf -0.90* -0.91** -0.89* -0.82* -0.89* -0.85* -0.73* -0.88* -0.93**
NTEbf -0.49 -0.66 -0.66 -0.63 -0.72 -0.66 -0.53 -0.69 -0.63
CGNbf -0.82* -0.93** -0.87* -0.80* -0.93** -0.92** -0.76* -0.85* -0.93**
NTAaf 0.79* 0.93** 0.86* 0.78* 0.93** 0.92** 0.75* 0.82* 0.91**
NTEaf 0.82* 0.92** 0.87* 0.79* 0.92** 0.90** 0.75* 0.85* 0.93**
CGNaf 0.82* 0.93** 0.87* 0.79* 0.93** 0.92** 0.75* 0.84* 0.93**
YPP 0.78* 0.80* 0.87* 0.90** 0.89* 0.92** 0.67* 0.78* 0.89*
灌溉条件
Irrigation condition
NAA 0.86* 0.86* 0.78* 0.66 0.89* 0.93** 0.85* 0.87* 0.77*
NUEg 0.96** 0.94** 0.94** 0.84* 0.98** 0.98** 0.96** 0.95** 0.94**
NUEb 0.95** 0.96** 0.96** 0.88* 0.95** 0.99** 0.98** 0.96** 0.94**
NTAbf -0.71* -0.80* -0.77* -0.81* -0.68 -0.69 -0.89* -0.66 -0.86*
NTEbf -0.59 -0.66 -0.69 -0.59 -0.70 -0.63 -0.70 -0.58 -0.67
CGNbf -0.87* -0.93** -0.87* -0.84* -0.90** -0.91** -0.97** -0.87* -0.90**
NTAaf 0.87* 0.91** 0.84* 0.78* 0.91** 0.94** 0.94** 0.88* 0.86*
NTEaf 0.85* 0.92** 0.86* 0.84* 0.90** 0.91** 0.97** 0.87* 0.89*
CGNaf 0.86* 0.93** 0.87* 0.84* 0.90** 0.91** 0.97** 0.87* 0.90**
YPP 0.77* 0.91** 0.88* 0.79* 0.81* 0.87* 0.80* 0.81* 0.89*

Table 2

The correlation analysis of the nitrogen accumulation and transport related traits with GS and GT activities"

环境
Environment
指标
Index
GS活性GS activity GT活性GT activity
D-7 D-14 D-21 D-28 D-7 D-14 D-21 D-28
雨养条件
Rain-fed condition
NAA 0.76* 0.69 0.70* 0.60 0.69 0.72* 0.69 0.76*
NUEg 0.94** 0.82* 0.87* 0.81* 0.83* 0.91** 0.88* 0.91**
NUEb 0.98** 0.91** 0.91** 0.91** 0.94** 0.95** 0.91** 0.96**
NTAbf -0.96** -0.81* -0.87* -0.83* -0.81* -0.95** -0.85* -0.85*
NTEbf -0.61 -0.70 -0.59 -0.67 -0.68 -0.51 -0.67 -0.68
CGNbf -0.97** -0.82* -0.86* -0.81* -0.82* -0.94** -0.85* -0.87*
NTAaf 0.96** 0.81* 0.86* 0.79* 0.80* 0.93** 0.84* 0.86*
NTEaf 0.97** 0.81* 0.85* 0.80* 0.80* 0.94** 0.84* 0.86*
CGNaf 0.97** 0.82* 0.86* 0.80* 0.82* 0.94* 0.85* 0.87*
YPP 0.88* 0.61 0.86* 0.77* 0.88* 0.92** 0.87* 0.80*
灌溉条件
Irrigation condition
NAA 0.97** 0.94** 0.84* 0.79* 0.83* 0.82* 0.8437* 0.84*
NUEg 0.97** 0.97** 0.93** 0.90** 0.91** 0.91** 0.94** 0.89*
NUEb 0.97** 0.96** 0.96** 0.94** 0.92** 0.93** 0.96** 0.93**
NTAbf -0.71* -0.73* -0.83* -0.90** -0.74* -0.74* -0.82* -0.66
NTEbf -0.52 -0.67 -0.65 -0.66 -0.61 -0.56 -0.59 -0.67
CGNbf -0.93** -0.92** -0.94** -0.96** -0.87* -0.87* -0.92** -0.87*
NTAaf 0.96** 0.94** 0.90** 0.90** 0.85* 0.85* 0.89* 0.86*
NTEaf 0.92** 0.91** 0.93** 0.96** 0.86* 0.86* 0.91** 0.86*
CGNaf 0.92** 0.91** 0.94** 0.96** 0.87* 0.87* 0.92** 0.86*
YPP 0.90* 0.89* 0.92** 0.81* 0.79* 0.87* 0.88* 0.88*

Table 3

The correlation analysis of the nitrogen accumulation and transport related traits with the GOGAT and AK activities"

环境
Environment
指标
Index
GOGAT活性GOGAT activity AK活性AK activity
D-7 D-14 D-21 D-28 D-7 D-14 D-21 D-28
雨养条件
Rain-fed condition
NAA 0.52 0.66 0.45 0.51 0.58 0.68 0.67 0.53
NUEg 0.79* 0.88* 0.76* 0.78* 0.83* 0.92** 0.91** 0.84*
NUEb 0.88* 0.92** 0.83* 0.87* 0.92** 0.94** 0.91** 0.89*
NTAbf -0.90* -0.89* -0.87* -0.85* -0.88* -0.89* -0.87* -0.89*
NTEbf -0.56 -0.69 -0.61 -0.66 -0.64 -0.59 -0.61 -0.67
CGNbf -0.84* -0.86* -0.78* -0.79* -0.84* -0.88* -0.85* -0.82*
NTAaf 0.81* 0.85* 0.75* 0.76* 0.81* 0.86* 0.84* 0.79*
NTEaf 0.84* 0.86* 0.79* 0.79* 0.84* 0.87* 0.84* 0.82*
CGNaf 0.83* 0.86* 0.78* 0.79* 0.84* 0.88* 0.85* 0.82*
YPP 0.67 0.84* 0.75* 0.74* 0.78* 0.87** 0.79* 0.82*
灌溉条件
Irrigation condition
NAA 0.80* 0.69 0.79* 0.78* 0.79* 0.83* 0.82* 0.98**
NUEg 0.85* 0.79* 0.89* 0.87* 0.72* 0.89* 0.93** 0.98**
NUEb 0.89* 0.84* 0.93** 0.92** 0.74* 0.92** 0.93** 0.98**
NTAbf -0.85* -0.88* -0.91** -0.78* -0.73* -0.88* -0.91** -0.73*
NTEbf -0.60 -0.69 -0.48 -0.70 -0.67 -0.58 -0.64 -0.65
CGNbf -0.94** -0.89* -0.96** -0.89* -0.85* -0.96** -0.95** -0.95**
NTAaf 0.89* 0.81* 0.91** 0.85* 0.83* 0.91** 0.91** 0.98**
NTEaf 0.93** 0.88* 0.96** 0.88* 0.84* 0.95** 0.94** 0.95**
CGNaf 0.93** 0.89* 0.97** 0.89* 0.84* 0.96** 0.95** 0.95**
YPP 0.90** 0.70* 0.89* 0.84* 0.78* 0.90** 0.89* 0.90*

Fig.4

Scheme of the proposed physiological mechanisms of high nitrogen use efficiency in wheat Only those pathways discussed in the present study are depicted. The levels of enzymes were color gradient from high (red) to low (blue)"

[1] Makino A. Photosynthesis,grain yield,and nitrogen utilization in rice and wheat. Plant Physiology, 2011, 155(1):125-129.
doi: 10.1104/pp.110.165076 pmid: 20959423
[2] Jones D L, Clode P L, Kilburn M R, et al. Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum). New Phytologist, 2013, 200(3):796-807.
doi: 10.1111/nph.12405 pmid: 23845035
[3] Moddassir A, Muhammad R, Zahid M, et al. Excessive use of nitrogenous fertilizers:an unawareness causing serious threats to environment and human health. Environmental Science and Pollution Research, 2017, 24(35):26893-26987.
doi: 10.1007/s11356-015-4365-2
[4] Udvardi M, Brodie E L, Riley W, et al. Impacts of agricultural nitrogen on the environment and strategies to reduce these impacts. Procedia Environmental Sciences, 2015, 29:303-303.
doi: 10.1016/j.proenv.2015.07.275
[5] Oh K, Kato T, Xu H L. Transport of nitrogen assimilation in xylem vessels of green tea plants fed with NH4-N and NO3-N. Pedosphere, 2008, 18(2):222-226.
doi: 10.1016/S1002-0160(08)60010-7
[6] Pan J, Zhu Y, Jiang D, et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat. Field Crops Research, 2005, 97(2):322-336.
doi: 10.1016/j.fcr.2005.11.006
[7] Miflin B J, Lea P J. The pathway of nitrogen assimilation in plants. Phytochemistry, 1976, 15(6):873-885.
doi: 10.1016/S0031-9422(00)84362-9
[8] Sitt M, Krapp A. The interaction between elevated carbon dioxide and nitrogen nutrition:the physiological and molecular background. Plant Cell and Environment, 1999, 22(6):583-621.
doi: 10.1046/j.1365-3040.1999.00386.x
[9] Xu G H, Fan X R, Miller A J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63(1):153-182.
doi: 10.1146/annurev-arplant-042811-105532
[10] Fabien C, John F, Bertrand H, et al. Breeding for increased nitrogen‐use efficiency:a review for wheat (T. aestivum L.). Plant Breeding, 2016, 135(3):255-278.
doi: 10.1111/pbr.12371
[11] 吴晓静, 江海东. 花后酸雨和渍水胁迫对小麦氮代谢关键酶活性及籽粒蛋白组成的影响. 南京农业大学学报, 2016, 39(1):26-33.
[12] 韩巧霞, 郭天财, 王化岑, 等. 土壤质地对冬小麦旗叶可溶性蛋白含量及籽粒干物质积累动态的影响. 河南农业科学, 2006(12):20-23.
[13] Rossato L, Laine P, Ourry A. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle:nitrogen fluxes within the plant and changes in soluble protein patterns. Journal of Experimental Botany, 2001, 52(361):1655-1663.
pmid: 11479330
[14] Lamattina L, LezicaR P, Conde R D. Protein metabolism in senescing wheat leaves,determination of synthesis and degradation rates and effects on protein loss. Plant Physiology, 1985, 77(3):587-590.
doi: 10.1104/pp.77.3.587 pmid: 16664103
[15] Palma J M, Sandalio L M, Corpas F J, et al. Plant proteases,protein degradation,and oxidative stress:role of peroxisomes. Plant Physiology and Biochemistry, 2002, 40(6):521-530.
doi: 10.1016/S0981-9428(02)01404-3
[16] Hörtensteiner S, Feller U. Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany, 2002, 53(370):927-937.
pmid: 11912235
[17] 杨宇亭, 闵伟红. 天冬氨酸激酶代谢调控的研究进展. 食品科学, 2016, 37(7):270-275.
[18] Yang J W, Shi Y G, Shi H W, et al. Screening of wheat (Triticum aestivum L.) varieties with high nitrogen use efficiency under rainfed and irrigated conditions. Turkish Journal of Field Crops, 2019, 24(2):1-11.
[19] Hawkesford M J. Genetic variation in traits for nitrogen use efficiency in wheat. Journal of Experimental Botany, 2017, 68(10):2627-2632.
doi: 10.1093/jxb/erx079 pmid: 28338945
[20] 郝建军, 康宗利, 于洋. 植物生理学实验技术. 北京: 化学工业出版社, 2007.
[21] 韩雅珊. 食品化学实验指导. 北京: 中国农业大学出版社, 1992.
[22] 中国科学院上海植物生理研究所,上海植物生理学会. 现代植物生理学实验指南. 北京: 科学出版社, 1999.
[23] 郑朝峰, 林振武. 谷氨酸合酶活力的快速测定. 植物生理学通讯, 1985(4):45-48.
[24] Brennecke K, Neto A J S, Juverlande L, et al. Aspartate kinase in the maize mutants ask1-LT19 and opaque-2. Phytochemistry, 1996, 41(3):707-712.
doi: 10.1016/0031-9422(95)00634-6
[25] 李科, 卢向阳, 彭丽莎. 饲料稻氮代谢特性研究. 湖南农业大学学报(自然科学版), 2001, 27(5):331-334.
[26] 杨延兵, 高荣岐, 尹燕枰, 等. 不同品质类型冬小麦籽粒产量和品质性状对氮肥的响应. 麦类作物学报, 2004, 24(2):97-102.
[27] 王月福, 姜东, 于振文, 等. 氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础. 中国农业科学, 2003, 36(5):513-520.
[28] 杨肖娥, 孙羲. 杂交水稻氮素代谢特性的研究. 浙江大学学报(农业与生命科学版), 1989, 15(1):89-98.
[29] 荣湘民, 刘强, 朱红梅. 水稻的源库关系及碳、氮代谢的研究进展. 中国水稻科学, 1998, 12(增1):63-69.
[30] 陈静彬. 几种新型植物生长调节剂对水稻氮代谢和光合特性影响的比较研究. 长沙:湖南农业大学, 2002.
[31] 王小纯, 熊淑萍, 马新明, 等. 不同形态氮素对专用型小麦花后氮代谢关键酶活性及籽粒蛋白质含量的影响. 生态学报, 2005, 25(4):802-807.
[32] Marien H, Anne M, Fabien C, et al. Nitrogen remobilization during leaf senescence:lessons from Arabidopsis to crops. Journal of Experimental Botany, 2017, 68(10):2513-2529.
doi: 10.1093/jxb/erw365 pmid: 27707774
[33] Marine P, Balakumaran C, Renier A L, et al. Characterization of senescence-associated protease activities involved in the efficient protein remobilization during leaf senescence of winter oilseed rape. Plant Science, 2016, 246:139-153.
doi: S0168-9452(16)30023-1 pmid: 26993244
[34] Pate J S. Uptake,assimilation and transport of nitrogen compounds by plants. Soil Biology and Biochemistry, 1973, 5(1):109-119.
doi: 10.1016/0038-0717(73)90097-7
[1] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[2] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[3] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[4] Shen Wenyuan, Chen Xinyu, Yu Xurun, Wu Yunfei, Chen Gang, Xiong Fei. Advance of Effects of Rhizosphere Temperature Stress on Morphology and Physiology of Wheat Root [J]. Crops, 2022, 38(6): 23-32.
[5] Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244.
[6] Zhu Qidi, Li Yanyan, Lu Meng, Lin Shengzhe, Yu Chengqiang, Liu Ke. Analysis of Wheat Kernel Quality and Morphological Characteristics at Different Spikelet Positions [J]. Crops, 2022, 38(6): 88-92.
[7] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[8] Sun Yunchao, Peng Keyan, Feng Shengye, Ji Chuanyun, Lü peng, Ju Zhengchun. Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing [J]. Crops, 2022, 38(5): 130-134.
[9] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[10] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[11] Ge Changbin, Qin Suyan, Huang Jie, Cao Yanyan, Liao Pingʼan. Effects of Tillage Methods on Fusarium Head Blight and Yield of Wheat [J]. Crops, 2022, 38(5): 235-240.
[12] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[13] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[14] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[15] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hongyan Li,Yonghong Wang,Rulang Zhao,Wenjie Zhang,Bo Ming,Ruizhi Xie,Keru Wang,Lulu Li,Shang Gao,Shaokun Li. The Construction and Application of Maize Grain Dehydration Model in Yellow River Irrigation and Pumping Irrigation District in Ningxia[J]. Crops, 2018, 34(4): 149 -153 .
[2] Huiqin Wen,Tianling Cheng,Ziyou Pei,Xue Li,Lisheng Zhang,Mei Zhu. Analysis of Comprehensive Characteristics of Wheat Varieties Registered in Shanxi Province in Recent Years[J]. Crops, 2018, 34(4): 32 -36 .
[3] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis[J]. Crops, 2018, 34(4): 37 -41 .
[4] Zhongguo He,Tongguo Zhu,Yufa Li,Baizhong Wang,Hailong Niu,Hongxin Liu,Weitang Li,Shujing Mu. Current Situation and Development Direction of Peanut Breeding in Jilin[J]. Crops, 2018, 34(4): 8 -12 .
[5] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[6] Yan Zhang,Cui Yin,Yun’e Cao. Effects of Earthworm Fermentation Broth on Fruit and Vegetables Quality[J]. Crops, 2018, 34(1): 102 -106 .
[7] Shaohui Huang,Yunma Yang,Ketong Liu,Junfang Yang,Suli Xing,Yanming Sun,Liangliang Jia. Effects of Different Fertilization Method on Wheat Yield and Fertilizer Contribution Rate in Hebei Province[J]. Crops, 2018, 34(1): 113 -117 .
[8] Zhimin Du,Yuchen Yang,Yuanye Xia,Yanlong Gong,Zhiqiang Yan,Hai Xu. Effects of Harvest Time on Quality Traits of Hybrid Japonica Rice and Inbred Japonica Rice in Northern China[J]. Crops, 2018, 34(1): 147 -151 .
[9] Zhanning Gao,Hui Feng,Zhenggang Xue,Yongqian Yang,Shujie Wang,Zhengmao Pan. Analysis of Main Agronomic Traits of 28 Barley Varieties (Lines)[J]. Crops, 2018, 34(1): 77 -82 .
[10] Kai Zhu,Fei Zhang,Fulai Ke,Yanqiu Wang,Jianqiu Zou. Effects of Planting Density on Yield and Physiological Characteristics of Sorghum Hybrids Suitable for Mechenization[J]. Crops, 2018, 34(1): 83 -87 .