Crops ›› 2022, Vol. 38 ›› Issue (4): 242-248.doi: 10.16035/j.issn.1001-7283.2022.04.034

Previous Articles     Next Articles

Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat

Liang Weiqin1(), Jia Li2(), Guo Liming1, Li Yinglan3, Hu Yafeng1, Chen Xiaohua1, Ma Xufeng1, Li Jing1   

  1. 1Agricultural Technology Extension and Service Center of Anding District, Dingxi 743000, Gansu, China
    2Agricultural Technology and Popularization Center in Dingxi City, Dingxi 743000, Gansu, China
    3District Agricultural Radio and Television School of Dingxi Anding District, Dingxi 743000, Gansu, China
  • Received:2022-01-10 Revised:2022-04-20 Online:2022-08-15 Published:2022-08-22
  • Contact: Jia Li E-mail:744250668@qq.com;472354512@qq.com

Abstract:

In order to establish an optimum combination of water and nitrogen for spring wheat in central Gansu province, an experiment was conducted as a completely randomized split-plot design, with local wheat cultivar (Longchun 27) as the experimental material, taking irrigation [1000 (W1), 2000 (W2) and 3000m3/ha (W3)] as main plot treatment and N-supply as split-plot treatment [0 (N0), 80 (N1), 160 (N2) and 240kg/ha (N3)]. The effect of intermittent irrigation and nitrogen on dry matter accumulation, nitrogen content, nitrogen accumulation, and yield of spring wheat was investigated. The results showed dry matter accumulation, nitrogen accumulation, nitrogen transport and yield were significantly affected by irrigation treatment, N rate and irrigation treatment × N rate interaction. The increase in irrigation and nitrogen led to an initial increase in dry matter accumulation in wheat. N fertilizer had little impact, and waterʼs contribution to dry matter accumulation more significant. The nitrogen contents of stems and leaves increased with the amount of nitrogen. The order of nitrogen content was grain > leaf > glume > root > stem, the order of irrigation and nitrogen rate effect on nitrogen content in vegetative organs was nitrogen > irrigation. Nitrogen content in vegetative organs increased first and then decreased with the increase of nitrogen rate and irrigation amount, the maximum grain yield were observed in W2N2 treatment. Suitable water and nitrogen condition was beneficial to the dry matter transfer from vegetative organs to reproductive organs, raise grain production efficiency, nitrogen production efficiency and yield of spring wheat. Thus, the irrigation schedule (2000m3/ha) and optimized nitrogen (160kg/ha) can promote the wheat growth.

Key words: Wheat, Irrigation and nitrogen application, Dry matter accumulation, Nitrogen accumulation, Yield

Fig.1

Rainfall in the test area in 2019 and annual average rainfall"

Table 1

Effects of irrigation and nitrogen application rates on dry matter accumulation of wheat at different growth stages kg/hm2"

处理Treatment 生育期Growth period 花后干物质累积量
Dry matter accumulation
after anthesis
灌水
Irrigation

Nitrogen
拔节期
Jointing
开花期
Anthesis
灌浆期
Filling
成熟期
Mature
W1 N0 975.83bE 2795.66bD 4556.11bF 5005.40cH 2209.74bD
N1 1118.02aCD 3816.20aBC 5618.30aDE 6010.14bFG 2193.94bD
N2 1154.75aC 3921.62aBC 6082.31aDE 6899.20aEF 2977.58aCD
N3 1198.33aC 4347.41acAB 6716.58aCD 7263.19aE 2915.78aCD
W2 N0 1018.22bDE 3421.13cCD 5206.52bEF 6018.10cG 2596.97cD
N1 1179.91bC 4250.30bABC 7714.48bABC 8790.00bD 4539.70bC
N2 1333.41aB 4570.81aAB 7910.38aABC 9812.48aC 5241.67aBC
N3 1365.35aAB 4621.39aAB 8572.42aAB 10 405.10aBC 5783.71aB
W3 N0 1173.54bC 4010.22bABC 5669.47cDE 6890.50cE 2880.28bCD
N1 1396.42aAB 4233.51abABC 7712.45bBC 10 770.32bBC 6536.81abAB
N2 1551.58aAB 4942.27aA 7980.00abABC 11 072.30bAB 6130.03abAB
N3 1474.13aA 4558.03abAB 9155.61aA 12 072.10aA 7514.07aA
FF-value
W 37.49** 6.81** 88.88** 87.66** 283.16**
N 30.05** 10.11** 77.13** 53.85** 34.50**
W×N 3.93** 0.49 6.30** 5.90** 8.83**

Fig.2

Effects of irrigation and nitrogen application rates on nitrogen contents in the different organs of spring wheat at mature stage"

Table 2

Nitrogen accumulation in different organs of spring wheat under irrigation and nitrogen application rates kg/hm2"

处理Treatment
Leaf

Stem
颖壳+穗轴
Glume+rachis

Root
籽粒
Grain
氮总和
Total N
灌水Irrigation 氮Nitrogen
W1 N0 4.87cE 14.57cE 12.82dG 3.48cF 72.80cF 108.54cE
N1 8.91bD 20.17bD 16.35cE 3.25bD 96.87bG 145.55bD
N2 10.11aC 25.55bD 20.45bD 4.48aBC 124.65aE 185.24aC
N3 11.27aB 30.51aBC 23.16aC 4.24aC 127.99aE 197.17aC
W2 N0 5.95cE 21.01dE 18.65dE 2.88cE 95.72dG 144.21cE
N1 9.29bC 26.42cC 20.04cD 4.35bC 142.42cD 202.52bB
N2 10.18bC 32.39bBC 25.19bB 4.76aA 181.73aA 254.25aA
N3 14.32aA 37.76aA 28.77aA 4.75aA 179.40bB 265.00aA
W3 N0 6.65dE 17.12cDE 15.29dF 2.56cF 108.49cG 221.03cB
N1 9.46cC 24.33bD 22.09cD 3.78bD 151.73bC 239.08bB
N2 11.56bB 32.21aBC 27.61bAB 4.44aBC 171.83aB 255.25aA
N3 15.29aA 30.62aB 25.65aB 4.12aC 178.19aA 255.12aA
FF-value
W 43.82** 30.64** 82.97** 29.66** 316.09** 289.34**
N 349.12** 227.99** 444.12** 217.64** 402.37** 573.03**
W×N 6.60** 9.95** 2.52* 0.70 20.56** 14.87**

Table 3

Effects of irrigation and nitrogen application rates on grain yield and nitrogen use efficiency"

处理Treatment 籽粒产量
Grain yield
(kg/hm2)
NHI
(%)
氮素干物质生产效率
N use efficiency of
biomass (kg/kg)
氮素籽粒生产效率
N use efficiency of
grain (kg/kg)
NUPE
(kg/kg)
NPFP
(kg/kg)
氮肥利用率
Recovery efficiency
of N (%)
灌水
Irrigation

Nitrogen
W1 N0 2184.63cE 66.45bD 46.98aA 20.51aB
N1 2768.52bcDE 66.56abCD 41.29aB 19.02bC 1.81aB 34.61aC 46.26aB
N2 3414.98abCD 67.29aBC 37.24bC 18.44cD 1.16bE 21.34bD 47.94aB
N3 3656.33aC 64.91abCD 36.84bC 18.54cD 0.82cC 15.23cE 36.93bC
W2 N0 2975.32cDE 70.72bABC 41.73abB 20.63bC
N1 4482.88bB 75.32aA 43.40aB 22.14aAB 2.53aA 56.03aB 72.89aA
N2 5418.66aA 71.48aA 38.59bC 21.31bC 1.59bB 33.87bC 68.78aA
N3 5446.90aA 67.70bCD 39.26bC 20.55bC 1.10cC 22.70cD 50.33bB
W3 N0 3396.25bCD 70.29bAB 52.96bA 26.10aA
N1 5101.84aAB 71.80aA 50.96aA 24.14bB 2.64aA 63.77aA 22.56aD
N2 5472.52aA 69.38cABC 44.71bB 22.10cC 1.55bB 34.20bC 21.39aD
N3 5424.60aA 68.97dCD 47.55bA 21.37cC 1.06cC 22.60cD 14.20bE
FF-value
W 114.12** 31.06** 27.19** 34.52** 88.07** 35.91** 223.25**
N 76.22** 9.75** 64.36** 106.22** 933.23** 311.11** 183.38**
W×N 4.00** 3.25* 7.75** 2.88* 19.40** 8.23** 35.91**
[1] 刘斌. 河西地区率先建设节水型社会的探讨. 中国水利, 2004, 55(10):45-47.
[2] 寇雯萍, 张富仓, 冯磊磊, 等. 不同生育期灌水和施氮对河西地区春小麦生长和产量的影响. 干旱地区农业研究, 2010, 28(3):1-6.
[3] 陈伟, 孙建好, 赵建华. 甘肃省小麦施肥现状分析与评价. 干旱地区农业研究, 2013, 31(2):23-27.
[4] 巨晓棠, 谷保静. 我国农田氮肥施用现状问题及趋势. 植物营养与肥料学报, 2014, 20(4):783-795.
[5] 汤秋香, 林涛, 苏秀娟, 等. 极端干旱区滴灌量对冬小麦水氮利用及根系分布的影响. 麦类作物学报, 2015, 35(10):1412-1418.
[6] 蔡瑞国, 张迪, 张敏, 等. 雨养和灌溉条件下施氮量对小麦干物质积累和产量的影响. 麦类作物学报, 2014, 34(2):194-202.
[7] 孟维伟, 王东, 于振文. 施氮量对小麦氮代谢相关酶活性和子粒蛋白质品质的影响. 植物营养与肥料学报, 2012, 18(1):10-17.
[8] 张凯, 陈年来, 顾群英. 不同水氮水平下小麦品种对光、水和氮利用效率的权衡. 应用生态学报, 2014, 27(7):2273-2282.
[9] 胡梦芸, 门福圆, 张颖君, 等. 水氮互作对作物生理特性和氮素利用影响的研究进展. 麦类作物学报, 2016, 36(3):332-340.
[10] 张雨新, 张富仓, 邹海洋, 等. 生育期水分调控对甘肃河西地区滴灌春小麦氮素吸收和利用的影响. 植物营养与肥料学报, 2017, 23(3):597-605.
[11] 石玉, 于振文. 施氮量及底追比例对小麦产量、土壤硝态氮累积量和氮平衡的影响. 生态学报, 2013, 26(11):3661-3669.
[12] 周玲, 王朝辉, 李富翠, 等. 不同产量水平旱地冬小麦品种干物质累积和转移的差异分析. 生态学报, 2012, 32(13):4123-4131.
[13] 张锡洲, 阳显斌, 李廷轩, 等. 小麦氮素利用效率的基因型差异. 应用生态学报, 2011, 22(2):369-375.
[14] 王海江, 崔静, 侯振安, 等. 膜下滴灌棉花水氮耦合对其干物质和水分利用效率的影响. 西北农业学报, 2010, 19(3):76-80.
[15] 李亚杰, 徐文修, 张娜, 等. 水氮耦合对滴灌复播大豆干物质积累氮素吸收及产量的影响. 干旱地区农业研究, 2016, 34(5):79-84,90.
[16] 李志勇, 陈建军, 陈明灿. 不同水肥条件下冬小麦的干物质积累、产量及水氮利用效率. 麦类作物学报, 2005, 25(5):80-83.
[17] 郭丙玉, 高慧, 唐诚, 等. 水肥互作对滴灌玉米氮素吸收、水氮利用效率及产量的影响. 应用生态学报, 2015, 26(2):3679-3686.
[18] 崔红艳, 方子森. 水氮互作对胡麻干物质生产和产量的影响. 西北植物学报, 2016, 36(1):156-164.
[19] 马东辉, 王月福, 周华, 等. 氮肥和花后土壤含水量对小麦干物质积累、运转及产量的影响. 麦类作物学报, 2007, 27(5):847-851.
[20] 李东方, 李世清, 李紫燕, 等. 冬小麦同化物、氮素转移量和转移效率对氮肥的反应. 麦类作物学报, 2006, 26(5):106-112.
[21] 秦姗姗, 侯宗建, 吴忠东, 等. 水氮耦合对冬小麦氮素吸收及产量的影响. 排灌机械工程学报, 2017, 35(5):440-447.
[22] 赵建红, 李玥, 孙永健, 等. 灌溉方式和氮肥运筹对免耕厢沟栽培杂交稻氮素利用及产量的影响. 植物营养与肥料学报, 2016, 22(3):609-617.
[23] 郭天才, 宋晓, 冯伟, 等. 高产麦田氮素利用、氮平衡及适宜施氮量. 作物学报, 2008, 34(5):886-892.
[24] 臧贺藏, 刘云鹏, 曹莲, 等. 水氮限量供给下两个高产小麦品种氮素吸收与利用特征. 麦类作物学报, 2012, 32(3):503-509.
[25] 李世娟, 周殿玺, 诸叶平, 等. 水分和氮肥运筹对小麦氮素吸收分配的影响. 华北农学报, 2002, 17(1):69-75.
[26] 王小燕, 于振文. 不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响. 中国农业科学, 2008, 41(10):3015-3024.
[27] 吕丽华, 董志强, 张经廷, 等. 水氮对冬小麦-夏玉米产量及氮利用效应研究. 中国农业科学, 2014, 47(19):3839-3849.
[28] Zakia I A, Shama E D, Ahmed A S. Effect of water stress and nitrogen application on grain yield of wheat:The 37th and 38th Meetings of the National Crop Husbandry Committee. Sudan:Agricultural Research and Technology Corporation Unit, 2006:155-162.
[29] 栗丽, 洪坚平, 王宏庭, 等. 水氮处理对冬小麦生长、产量和水氮利用效率的影响. 应用生态学报, 2013, 24(5):1367-1373.
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[4] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[5] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
[6] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[7] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[8] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[9] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[10] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[11] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[12] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[13] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[14] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[15] Jian Juntao, Wang Qinghua, Yang Hui, Liu Jun, Zhu Chuanjie, Li Yupeng, Zhang Bin, Zhang Zhen, Quan Honglei, Xie Yanzhou, Wang Chengshe. Utilization of New Wheat Varieties (Lines) from Southern Huanghuai in Nanyang Basin-Transitional Ecological Area [J]. Crops, 2022, 38(4): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!