Crops ›› 2022, Vol. 38 ›› Issue (4): 46-53.doi: 10.16035/j.issn.1001-7283.2022.04.007

Previous Articles     Next Articles

Utilization of New Wheat Varieties (Lines) from Southern Huanghuai in Nanyang Basin-Transitional Ecological Area

Jian Juntao1(), Wang Qinghua1(), Yang Hui1(), Liu Jun2, Zhu Chuanjie3, Li Yupeng1, Zhang Bin1, Zhang Zhen1, Quan Honglei1, Xie Yanzhou3, Wang Chengshe3   

  1. 1Nanyang Academy of Agricultural Sciences, Nanyang 473000, Henan, China
    2Jiaozuo Academy of Agriculture and Forestry Sciences, Jiaozuo 454002, Henan, China
    3College of Agronomy, Northwest A & F University/State Key Laboratory of Crop Stress Biology in Arid Areas, Xianyang 712100, Shaanxi, China
  • Received:2022-01-24 Revised:2022-03-31 Online:2022-08-15 Published:2022-08-22
  • Contact: Yang Hui E-mail:jjt312024501@163.com;2393945644@qq.com;13721807607@163.com

Abstract:

Stripe rust occurred frequently in spring of Nanyang basin, and the unique climate in Nanyang is not suitable for the development of high quality wheat. Selecting new wheat varieties (lines) with good stripe rust resistance, good quality and comprehensive agronomic traits could provide a reference for the selection and utilization of Nanyang basin. In order to identify stripe rust resistance, the key agronomic indicators and the quality after harvest of 91 new wheat varieties (lines) tested in the national Huanghuai region from 2020 to 2021 were studied by inoculating with mixed bacteria of Tiaozhong 32 and Tiaozhong 34 at adult stage. A total of 35 samples (38.46%) showed slow stripe rust resistance or high stripe rust resistance from the result of national districts, and 39 samples (42.86%) showed moderate or higher stripe rust resistance from the result of artificial inoculation identification. After harvest from Nanyang in 2021, 20 samples (21.98%) showed strong gluten or medium-strong gluten from the result of national districts, and 57 samples (62.64%) showed strong gluten or medium-strong gluten from the samples in 2020. The stripe rust resistance of 39 strips reached medium resistance or above, and were clustered into seven groups at the square euclidean distance of 6.25 according to agronomic traits. The small mean tensile area might be a key index affecting the quality of wheat in Nanyang. The large coefficients of variation indicated the materials were abundant variation. Shanhe 1028 and Fanyumai 20 were varieties with high quality and strong gluten suitable for planting in Nanyang, and can be utilized in breeding of the combination of high quality and strong gluten.

Key words: Southern Huanghuai, Wheat, Nanyang basin, Stripe rust resistance, Agronomic trait, Quality

Table 1

Pedigree, stripe rust resistance and quality of 91 wheat varieties (lines) for regional test"

编号
Number
品种(系)
Variety (line)
系谱
Pedigree
条锈抗性
Strip rust resistance
品质
Quality
QS NY 2020 2021
P1 涡麦169 莱137//周麦16号//漯麦4号 SR MR MG MG
P2 存麦29 丰德存麦1号/丰德存麦5号 SR MR MSG MG
P3 淮核16174 冬春轮回选择群体 MS S SG MSG
P4 富麦916 新麦26/周麦32 S R SG SG
P5 漯麦68 丰德存麦1号//郑麦9023/兰考906 S S MG MG
P6 泛麦26 新麦26/(西农979/矮抗58)F4 SR MR MSG SG
P7 德研1658 百农AK58/周麦16 SR R MG MG
P8 柳麦521 淮麦20/金麦8号 MS S SG MG
P9 新农9799 周麦32/郑麦366 S MR MSG SG
P10 永丰206 百农207/济麦22 MS MS MSG MG
P11 职院171 西农271/周麦22 SR MR MSG MG
P12 保丰1707 保丰0757/洛麦23 S S MG MSG
P13 天益科麦10号 烟农19/淮核0615 S S MSG MG
P14 淮核16132 冬春轮回选择群体 S MS MSG MSG
P15 郑麦181 周麦22//新麦26//郑麦7698 MS MS MG MG
P16 淮麦701 郑麦0054/淮麦33//洛麦21/淮麦304 S S MSG MG
P17 郑研麦176 郑麦9023/新麦18 S MR MG MG
P18 许科10号 周麦30/郑麦05322 MS MR SG MG
P19 丰工38 丰德存麦1号///(莱州137/周麦16//郑育麦9987) MS MS MG MG
P20 周麦49 周麦22/周麦27 SR MS MSG MG
P21 华成7119 良星66/华成699 S S MSG MG
P22 科麦2号 淮麦0705/周麦16 S S MSG MG
P23 西农1366 周麦22/M325 SR R MG MG
P24 农友18 济麦1号/新3360//温6198/漯4异 MS S MSG MSG
P25 西农1125 西农20/郑麦7698 SR MR MSG SG
P26 郑研麦182 周麦16/郑豫麦9987 MS MS MG MG
P27 豫农903 DH(生选6号/2*周麦22号) MS MR MSG MG
P28 驻麦586 周麦26/泛麦08206 MS MR SG MG
P29 西农9112 周麦98165/濮兴2108 SR MR MG MG
P30 阜麦1008 济麦22/淮麦22 S S SG MG
P31 华麦15080 矮抗58/淮0607 S MS MSG MG
P32 西农172 N9436/西农529 SR MR MSG MSG
P33 中麦698 中麦895/周麦22//中麦895 S MS MSG MG
P34 皖科421 皖科700/(周麦27/洛麦23) S S MG MG
P35 保麦1633 淮0607/周麦16 S S MG MG
P36 陕禾1028 西农294/新麦26 SR R SG MSG
P37 西农162 西农519/陕麦159 SR R MSG MG
P38 轮选69 矮败小麦轮回选择 MS S MG MG
P39 中育1686 周麦22/漯6082 SR MR MSG MG
P40 瑞华麦519 烟农19/瑞华麦516 SR MR SG MSG
P41 民研186 淮麦35/百农207 S S SG MG
P42 西农609 06RS10-1-1/西农822 SR MR MG SG
P43 阜麦13 山农20/淮麦22 S MS MG MG
P44 漯麦66 周麦27/周麦25 S S SG MG
P45 西农161 N0237-2-4-1-2/06804-2-3 SR R MSG SG
P46 科麦1609 许科1号/矮抗58//偃展4110 MS MR MSG MG
P47 郑大181 冀麦4号/郑农17 MS MS MSG MG
P48 苑丰11 兰考198/偃展4110 MS MS MG MG
P49 冠麦12 周麦22/矮抗58 SR MS MSG MG
P50 科林201 许科316/中植0914//周麦22 SR MS MG MG
P51 冠麦10号 周麦22/矮抗58 S S SG MG
编号
Number
品种(系)
Variety (line)
系谱
Pedigree
条锈抗性
Strip rust resistance
品质
Quality
QS NY 2020 2021
P52 郑育11 周麦22/偃展4110 SR MS MSG MG
P53 郑麦20 周麦18/矮抗58//偃展4110 MS MS MG MG
P54 泛麦23 良星66/郑麦366 MS MR MG MG
P55 平安918 豫麦158/豫教5号 S MS SG MG
P56 商麦185 中麦895//周麦30/D1016 R MR MSG MG
P57 丰工40 涡麦66/丰德存麦1号 SR R MG MG
P58 益科麦17118 金禾9123/周麦28 SR MS SG MG
P59 涡麦179 淮麦18/泰农18//丰德存1号 SR MR MSG MG
P60 顺麦13 周麦18/周麦22 S MS MG MG
P61 安科1703 烟农0428/07YT2122//10ELT238 S S SG MG
P62 徐麦15019 周麦16/徐8085 MS MS MG MG
P63 瑞华556 淮麦18/扬麦158//周麦22 S S MSG MG
P64 郑麦158 (Bigeaz-250/96)/周麦16//SP郑麦366 SR MR MSG MSG
P65 泛麦27 兰考906/周麦16//西农979 S S MSG MSG
P66 富麦701 邯6172/周麦22 MS MS MSG MG
P67 轮选125 矮败//周麦26/K8 MS MR MG MG
P68 豫农905 DH(新麦26/周麦28) SR R SG MG
P69 轮选147 轮选136/良星66 MS MS MG MG
P70 轮选124 矮败//漯9908/豫教5号 S S MG MG
P71 安科1605 ELT08235/济麦22//济麦22 S S SG MSG
P72 郑麦172 周麦25/郑育麦9987 S S MSG MG
P73 商麦189 周麦28/D0926-4-1//SQ0802 S MS MSG MG
P74 憨丰3468 西农979/西农889 SR R MG MG
P75 郑麦163 偃9998/矮抗58//郑麦366 SR R MSG MSG
P76 泉麦39 周麦27/远丰175 SR MR SG MG
P77 保丰1803 连麦2号/良星66 SR MS MSG MG
P78 平安12 周麦22/04中36 MS MS SG MG
P79 百农5819 百农5847/百农4199 MS R MG MG
P80 安农859 瑞华麦520/亿麦11 S S SG MG
P81 中金795 周麦18/矮抗58 SR MR MG MG
P82 现麦686 周麦26/济麦22 MS MR MG MG
P83 许科108 郑麦9023/兰考906//丰德存麦1号 MS MS SG MG
P84 咸麦519 01-450/周麦16 MS MS MG MG
P85 泛育麦20 泛麦5号/PH82-2-2//泛麦8号优4 SR MR MSG MSG
P86 普冰03 普冰4201/Jagger//FC大穗/3/周麦18 MS MS MG MG
P87 安科1704 淮麦25/07ELT203 S S MG MSG
P88 联邦2号 新原958/联邦1号 SR MS MSG MG
P89 郑麦33 兰考198/周麦98165 SR R MG MG
P90 新麦58 周麦32/新麦26 SR R SG SG
P91 偃高160 偃高21/偃高7039 SR R MG MG

Table 2

Variation analysis of main quality indexes of 91 wheat varieties (lines) for regional test in 2020"

指标Index 平均值Mean 变幅Amplitude of variation 方差Variance 变异系数Coefficient of variation (%)
蛋白质含量Protein content (%) 14.05 11.16~17.10 1.20 7.79
湿面筋含量Wet gluten content (%) 30.81 25.40~37.50 2.20 4.81
吸水率Water absorption (%) 59.56 51.40~65.20 2.07 2.42
稳定时间Stability time (min) 9.61 1.70~18.80 3.09 18.30
最大拉伸阻力Maximum resistance (EU) 577.23 347.00~799.00 86.60 1.61
拉伸面积Tensile area (cm2) 128.45 63.00~198.00 26.66 4.02

Fig.1

Cluster analysis of 39 varieties (lines) with moderate or above stripe rust resistance in important agronomic traits"

Table 3

Variation analysis of main quality indexes of 39 wheat varieties (lines) with moderate stripe rust resistance or above in 2021"

指标Index 平均值Mean 变幅Amplitude of variation 方差Variance 变异系数Coefficient of variation (%)
蛋白质含量Protein content (%) 13.98 11.78~15.91 1.09 7.48
湿面筋含量Wet gluten content (%) 30.79 25.80~36.00 2.65 5.29
吸水率Water absorption (%) 61.98 56.30~66.70 2.68 2.64
稳定时间Stability time (min) 10.36 1.00~18.20 4.36 20.16
最大拉伸阻力Maximum resistance (EU) 463.74 199.00~788.00 142.12 2.57
拉伸面积Tensile area (cm2) 77.77 5.00~151.00 40.13 8.15

Fig.2

Screening of quality and important agronomic indexes from six early-head type and strong or medium strong gluten wheat varieties (lines) P: protein content; WGC: wet gluten content; ST: stability time; MAR: maximum tensile resistance; TA: tensile area; H: plant height; TKW: 1000- kernel weight"

[1] 李振岐, 商鸿生. 小麦锈病及其防治. 上海: 上海科学技术出版杜, 1989.
[2] 赵广才. 中国小麦种植区划研究(一). 麦类作物学报, 2010, 30(5):886-895.
[3] 赵广才. 中国小麦种植区划研究(二). 麦类作物学报, 2010, 30(6):1140-1147.
[4] 孙化田. 河南省1990年小麦条锈病流行原因分析. 河南职技师院学报, 1991(4):18-20,29.
[5] 李金锁. 2017年度南阳市小麦条锈病流行特点及原因分析. 中国植保导刊, 2018, 38(2):35-38.
[6] 李金锁, 邓玉傲, 李海燕, 等. 南阳小麦条锈病监测预警及菌源基地综合治理技术研究与应用. 中国植保导刊, 2016, 36(2):46-49.
[7] 薛文波, 许鑫, 穆京妹, 等. 中国小麦主栽品种抗条锈性评价与基因分析. 麦类作物学报, 2014, 34(8):1054-1060.
[8] 胡学旭, 周桂英, 吴丽娜, 等. 2006-2014年我国小麦品质在年度和品质区之间的变化. 麦类作物学报, 2016, 36(3):292-301.
[9] 洪宇, 孙辉, 常柳, 等. 2020年我国小麦品质分析. 粮油食品科技, 2022, 30(1):87-92.
[10] 李金良, 赵丽英, 李金榜, 等. 南阳市小麦品质生态区划研究与应用. 河南农业科学, 2003(9):12-14.
[11] 李金榜, 李金秀, 许阳. 砂姜黑土区氮肥基追比对不同小麦品种产量和品质的影响. 河南农业科学, 2014, 43(7):73-75.
[12] 张磊, 齐学礼, 张建周, 等. 优质强筋高产小麦品种郑麦7698品质稳定性和高效节本生产技术研究. 河南农业科学, 2017, 46(12):13-16.
[13] 简俊涛, 张震, 李玉鹏, 等. 2种物候型小麦品种晚播后产量性状、品质分析及优化栽培. 江苏农业科学, 2020, 48(6):73-77.
[14] 简俊涛, 杨辉, 王清华, 等. 矮抗58及其衍生小麦品种在南阳麦区条锈抗性、农艺性状、品质及利用分析. 种子, 2021, 40(3):40-44,63.
[15] 简俊涛, 王清华, 杨辉, 等. 周8425B与小偃81的RIL品质、物候型及农艺性状分析. 中国种业, 2020(11):76-80.
[16] 蔚睿, 金彦刚, 吴舒舒, 等. 黄淮麦区小麦新品种(系)抗条锈水平与抗病基因分析. 麦类作物学报, 2020, 40(3):278-284.
[17] 韩德俊, 张培禹, 王琪琳, 等. 1980份小麦地方品种和国外种质抗条锈性鉴定与评价. 中国农业科学, 2012, 45(24):5013-5023.
[18] 戴妙飞, 穆京妹, 王晓婷, 等. ICARDA小麦种质抗条锈资源筛选和抗病基因分析. 麦类作物学报, 2019, 39(8):934-940.
[19] 曹廷杰, 陈永兴, 李丹, 等. 河南小麦新育成品种(系)白粉病抗性鉴定与分子标记检测. 作物学报, 2015, 41(8):1172-1182.
[20] 李振岐, 曾士迈. 中国小麦锈病. 北京: 中国农业出版社, 2002.
[21] 张庆勤, 张立异, 朱文华, 等. 簇毛麦在小麦抗病育种中的利用. 植物保护学报, 1998(1):41-45.
[22] 杜晓宇, 李楠楠, 邹少奎, 等. 黄淮南片新育成小麦品种(系)主要性状的综合性分析. 作物杂志, 2021(4):38-45.
[23] 杨辉, 李中恒, 王清华, 等. 南阳盆地麦区小麦生产的现状与育种应对策略探讨. 农业科技通讯, 2011(8):12-13.
[24] 朱保磊, 谢科军, 薛辉, 等. 河南省小麦品种(系)的品质状况及演变规律. 麦类作物学报, 2017, 37(5):623-631.
[1] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[2] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[3] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[4] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[5] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[6] Liu Xinya, Chen Xiaolong, Feng Yake, Liu Yang, Duan Weidong, An Xueqiang, Chen Fayuan, Cao Xingbing, Zhao Yuanyuan, Shi Hongzhi. Study on the Suitable Harvest Date of High Availability Upper Leaves of Flue-Cured Tobacco in Southwestern Guizhou [J]. Crops, 2022, 38(4): 227-235.
[7] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[8] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[9] Wang Xiaochun, Zhu Dexin, Yang Tianhui, Wang Chuan, Yang Weidi, Gao Ting, Liang Xiaojun. Correlation Analysis of Main Agronomic Characteristics of Different Alfalfa Varieties and Comparison of Hay Yield in Yellow River Irrigation Area of Ningxia [J]. Crops, 2022, 38(4): 32-36.
[10] Song Quanhao, Jin Yan, Song Jiajing, Chen Jie, Zhao Lishang, Bai Dong, Chen Liang, Zhu Tongquan. Comprehensive Evaluation of 35 Synthetic Hexaploid Wheat Cultivars [J]. Crops, 2022, 38(4): 69-76.
[11] Hu Dan. Genetic Analysis of Culm Gravity Height and Snapping Resistance in Common Buckwheat [J]. Crops, 2022, 38(4): 83-89.
[12] Ma Yihu, He Xianbiao, Qi Wen, Wang Xuhui, Chen Jian, Zhou Cui, Zhang Zhongxi. Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility [J]. Crops, 2022, 38(3): 115-124.
[13] Dong Weixin, Zhang Yuechen. Effects of Water-Nitrogen Interaction on Physiological Parameters and Yield Formation of Different Wheat Varieties [J]. Crops, 2022, 38(3): 125-133.
[14] Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154.
[15] Pan Feifei, Tang Jiao, Sun Zhuang, Chen Bihua, Wang Guangyin, Wu Dafu, Wang Wei. Effects of Biogas Slurry Instead of Chemical Fertilizer on Winter Wheat Yield [J]. Crops, 2022, 38(3): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!