Crops ›› 2022, Vol. 38 ›› Issue (3): 80-86.doi: 10.16035/j.issn.1001-7283.2022.03.011

Previous Articles     Next Articles

Analysis of the Effects of RNA Interference on Tobacco NtPPO8 Gene Silencing

Yao Yifan1(), Dai Zhuoyi1, Jiang Zhimin2, Xu Min3, Li Fangfang3, Zhang Xi4, Dang Wei1, Wu Zhaoyun1, Ding Yongle1, Yang Tiezhao1()   

  1. 1College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, Henan, China
    2Zhejiang China Tobacco Industry Co., Ltd., Hangzhou 310008, Zhejiang, China
    3China Tobacco Corporation Henan Company, Zhengzhou 450002, Henan, China
    4Technology Center, China Tobacco Shaanxi Industrial Co., Ltd., Baoji 721013, Shaanxi, China
  • Received:2021-07-07 Revised:2021-08-22 Online:2022-06-15 Published:2022-06-20
  • Contact: Yang Tiezhao E-mail:641429066@qq.com;yangtiezhao@126.com

Abstract:

Polyphenol oxidase (PPO) is a key enzyme for enzymatic browning and excessive PPO activity can brown tobacco leaves. To identify the effect of the tobacco NtPPO8 gene on PPO activity, a virus-induced gene silencing (VIGS) system was established to reduce the expression of the NtPPO8 gene. It was planned to explore the effect of RNA interference technology on the expression of the NtPPO8 gene and PPO enzyme activity in tobacco leaves. Using Zhongyan 100 as the material, the plants infected with the VIGS vector at 50d after transplantation were analyzed and the NtPPO8 gene expression level and PPO enzyme activity were measured at 10, 20, 30, and 40d after infection. The results showed that: in the transformed plants inoculated with VIGS vector, the highest silencing efficiency of the NtPPO8 gene was 78.46% at 20d after transplantation; the silencing efficiency of the NtPPO8 gene gradually decreased with time and it was effectively expressed within 40d after inoculation; the viral vector was transmitted upward with the plant growing and the silencing efficiency was gradually decreased as the inoculation site moves upward. Therefore, the establishment of the VIGS system could effectively silence the expression of the NtPPO8 gene and effectively reduce the activity of PPO. It provides new ideas and methods for improving tobacco leaf curing tolerance and reducing the proportion of tobacco leaf browning.

Key words: RNA interference, Polyphenol oxidase, Virus induced gene silencing, Tobacco, VIGS

Table 1

Primer sequence"

引物Primer 引物序列Primer sequence
18S F GGCCGTTCTTAGTTGGTGGA
18S R GTCCCTCTAAGAAGCTGGCC
NtPPO8 F GCCACAATTAAACCCGGTGT
NtPPO8 R ACTCTTCATCCACGGCATGA

Fig.1

Vector construction colony PCR electrophoresis diagram M: DL2000 marker, 1-8: E. coli colonies transformed by the product of TRV-NtPPO8 ligation vector"

Fig.2

Results of TRV2-NtPPO8 vector sequencing vector sequencing comparison"

Fig.3

The effects of different treatments on PPO activity and NtPPO8 gene expression Lowercase letters indicate significant differences at the P < 0.05 level between different plants,“*”indicates significant differences at the P < 0.05 level between different treatments of the same plant,“**”indicates a significant difference at the level of P < 0.01 between different treatments of the same plant, the same below"

Fig.4

PPO activity and NtPPO8 gene expression in different parts of tobacco treated by expression vector S1: 8th leaf position, S5: 12th leaf position, S9: 17th leaf position, S13: 22nd leaf position"

Fig.5

PPO activity and NtPPO8 gene expression in tobacco treated with expression vector at different times"

[1] Alfred M. Polyphenol oxidases in plants and fungi:Going places? A review. Phytochemistry, 2006, 67(21):2318-2331.
pmid: 16973188
[2] 杨昭, 何春兰, 黄佳佳, 等. 巴西蕉多酚氧化酶的基因克隆及序列分析. 安徽农学通报, 2016, 22(11):23-27,35.
[3] 李琼, 王雪云, 宋卫武, 等. 普通烟草PPO基因家族的鉴定与表达分析. 烟草科技, 2018, 51(8):9-13.
[4] 张永芬, 王平. 烟草多酚氧化酶生物信息学分析. 湖北农业科学, 2020, 59(8):161-163.
[5] 刘丹. 桑树多酚氧化酶基因抗逆功能研究. 重庆:西南大学, 2020.
[6] 王丽, 王万兴, 索海翠, 等. 植物中多酚氧化酶基因研究进展. 分子植物育种, 2020, 18(14):4629-4636.
[7] 韩秋敏, 王璇. 紫薯多酚氧化酶的性质研究. 食品工业, 2016, 37(2):1-3.
[8] 王传义, 吕国新, 朱启法, 等. 烤烟烘烤特性与烟草多酚氧化酶活性相关性研究. 湖北农业科学, 2016, 55(6):1495-1499,1503.
[9] 李玉娥, 尹启生, 宋纪真, 等. 烟草酶促棕色化反应及调控技术研究进展. 中国烟草科学, 2008, 29(6):71-77.
[10] 段杜薇, 田培, 李芳芳, 等. 多酚氧化酶基因NtPPOE差异表达的效应分析. 分子植物育种, 2021, 19(3):724-729.
[11] 弓志青, 王文亮. 果蔬采后酶促褐变机理及影响褐变的因素研究进展. 中国食物与营养, 2012, 18(2):30-33.
[12] Goldman M H, Seurinck J, Marins M, et al. A tobacco flower-specific gene encodes a polyphenol oxidase. Springer, 1998, 36(3):479-482.
[13] 刘天波, 蔡海林, 滕凯, 等. 病毒诱导的基因沉默防控烟草马铃薯Y病毒病研究. 中国烟草学报, 2020, 26(5):82-89.
[14] Frank R, Ana M M, David C B, et al. Tobacco rattle virus as a vector for analysis of genefunction by silencing. The Plant Journal, 2001, 25(2):237-245.
doi: 10.1046/j.0960-7412.2000.00942.x
[15] 高阳, 张永亮, 张晓峰, 等. 烟草坏死病毒 A 诱导的基因沉默及其条件优化. 生物化学与生物物理进展, 2011, 38(10):919-928.
[16] Liu E W, Page J E. Optimized cDNA libraries for virus-induced gene silencing (VIGS) using tobacco rattle virus. Plant Methods, 2008, 4(5):10-30.
doi: 10.1186/1746-4811-4-10
[17] 姚丙晨, 孙玥, 孙林静, 等. 病毒诱导的基因沉默的发展及在植物生物逆境上的应用. 中国农学通报, 2016, 32(9):131-136.
[18] 张琴琴, 纪兆林, 朱峰. 病毒诱导的基因沉默技术在双子叶植物中的应用研究进展. 河南农业科学, 2020, 49(2):1-8.
[19] 李丽文, 朱延明, 李杰, 等. RNAi技术在植物功能基因组学中的研究进展. 东北农业大学学报, 2007, 149(1):119-124.
[20] 孙术超, 安叶芝, 徐亚, 等. 利用AP3-Barnase嵌合基因的表达创制拟南芥雄性不育植株. 河北农业大学学报, 2019, 42(6):71-76.
[21] 武明珠, 刘瑞霞, 王中, 等. 利用VIGS技术研究NtbHLH93基因在烟草甾醇代谢中的功能. 烟草科技, 2019, 52(6):16-22.
[22] 刘晓彬, 刘娜, 李福宽, 等. TRV介导的大豆基因瞬时沉默体系的建立. 中国农业科学, 2015, 48(12):2479-2486.
[23] 刘凯. 烤烟NC102烘烤过程中多酚氧化酶活性及主要化学成分变化动态的研究. 泰安:山东农业大学, 2018.
[24] 韩锦峰, 李荣兴, 韩富根, 等. 烤烟烘烤过程中多酚氧化酶活性变化规律的初步探讨. 中国烟草, 1984(3):4-8.
[25] 李建平, 郝晓燕, 李琴, 等. 棉花VIGS病毒载体的构建及其在抗病基因功能鉴定的应用. 新疆农业科学, 2018, 55(7):1203-1208.
doi: 10.6048/j.issn.1001-4330.2018.07.004
[26] 陈坤梅, 李宏伟, 林凡云, 等. 利用病毒介导基因沉默方法研究小麦抗光氧化相关基因. 作物学报, 2014, 40(11):1905-1913.
[27] 孙天杰, 麻楠, 孙立永, 等. 一种基于TRV_VIGS的高通量大豆基因功能验证方法. 农业生物技术学报, 2020, 28(11):2080-2090.
[28] 王心宇, 吕坤, 蔡彩平, 等. TRV病毒介导的基因沉默体系在棉花中的建立及应用. 作物学报, 2014, 40(8):1356-1363.
[29] Senthil K M, Mysore K S. Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnology Journal, 2011, 9:797-806.
doi: 10.1111/j.1467-7652.2011.00589.x pmid: 21265998
[30] Yule L, Michael S, Dinesh-kumar S P, et al. Virus-induced gene silencing in tomato. The Plant Journal, 2002, 31(6):777-786.
doi: 10.1046/j.1365-313X.2002.01394.x
[31] Rui L, Ana M M, Jack R P, et al. Virus-induced gene silencing in plants. Methods, 2003, 30(1):296-303.
doi: 10.1016/S1046-2023(03)00037-9
[1] Zhu Lin, Cao Xiang, Deng Xiaohua, Hu Risheng, Pei Xiaodong, Xiang Shipeng, Xiao Zhijun, Wang Weimin, Zhang Cheng, Jiang Zhimin. Characteristics of Water Loss and Pigment Degradation of Xiangyan No.7 Tobacco Leaves during Curing Process [J]. Crops, 2022, 38(5): 174-179.
[2] Jia Guotao, Zhang Junling, Wei Zhuangzhuang, Yuan Qishan, Wang Baolin, Wang Xiaoyu, Ma Shengtao, Yang Xinling, Zhang Ziying, Zhang Shiying, Jia Shiwei, Chen Yang, Liu Huimin. Research on the Regional Characteristics of Contents of Free Amino Acids in Flue-Cured Tobacco Based on Factor Analysis and Cluster Analysis [J]. Crops, 2022, 38(5): 208-214.
[3] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[4] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[5] Li Diqin, Peng Yuanyuan, Wang Yan, Li Sijun, Peng Tianwei, Wang Qing, Li Qiang, Xie Huiya. Response of Tobacco Seedling Growth and Development to Combined Application of Brassinolide and Microbial Agents [J]. Crops, 2022, 38(4): 167-171.
[6] Liu Xinya, Chen Xiaolong, Feng Yake, Liu Yang, Duan Weidong, An Xueqiang, Chen Fayuan, Cao Xingbing, Zhao Yuanyuan, Shi Hongzhi. Study on the Suitable Harvest Date of High Availability Upper Leaves of Flue-Cured Tobacco in Southwestern Guizhou [J]. Crops, 2022, 38(4): 227-235.
[7] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[8] Yang Yingyue, Liu Hui, Wang Longfei, Zhao Zhe, Feng Xiaohu, Lai Miao, Zhao Mingqin. Effects of Different Fertilizer Types on Tobacco Planting Soil and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(3): 187-193.
[9] Zhang Xiaoquan, Jia Zhenyu, Li Juxu, Li Hongchen, Wang Baoxiang, Wang Jian, Shi Gang, Wang Chuan, Wu Yunjie. Effects of Different Root-Promoting Practices on Potassium Metabolism at Mature Stage of Flue-Cured Tobacco in Southern Anhui [J]. Crops, 2022, 38(3): 205-210.
[10] Tian Chaohua, Zhang Xuewei, Guo Wei, Liu Wenjian, Liu Yonglai, Cao Mingfeng, Zhu Li, Deng Yong, Jing Yanqiu, Liu Dong. Distribution Characteristics of Soil Available Boron in Guiyang Tobacco Area and Its Effects on the Boron and Main Nitrogen-Containing Compounds Contents of Tobacco Leaves [J]. Crops, 2022, 38(3): 218-224.
[11] Yun Fei, Ren Tianbao, Yin Quanyu, Jin Shuangzhen, Zheng Cong, Jin Lei, Li Jingjing, Liu Guoshun, Yang Xitian. Effects of Calcium by Foliage Spraying on Photosynthesis Physiology Characteristics of Flue-Cured Tobacco under Light Stress [J]. Crops, 2022, 38(2): 143-152.
[12] Tan Zhiyong, Shen Xiaoxiong, Liu Jie, Tan Daxin, Bai Bin, Zhou Xinghua, Zhao Hui. Spatial Variation Characteristics of Main Nutrients in Tobacco Planting Soil in Tongren City, Guizhou Province [J]. Crops, 2022, 38(2): 189-194.
[13] Meng Fan, Luo Jianxin, Cai Ye, Yu Ying, Yang Lei, Zhou Wanchun. Effects of Soil Available Phosphorus on Tobacco Growth and Dry Matter Accumulation and Distribution [J]. Crops, 2022, 38(2): 203-210.
[14] Lu Jun, Qian Yu, Yang Liu, Wang Yong, Chen Yulan. Effects of Storage Time on Seed Germination and Physiological Characteristics of Tobacco Variety Honghuadajinyuan [J]. Crops, 2022, 38(2): 211-214.
[15] Zhang Yudan, Ma Xiaohan, Li Junling, Xu Zicheng, Jia Wei, Shi Qiuhuan. Inhibitory Effect of Chlorogenic Acid on Phytophthora nicotiana and Its Control Effect on Tobacco Black Shank Disease [J]. Crops, 2022, 38(2): 230-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!