Crops ›› 2022, Vol. 38 ›› Issue (4): 187-192.doi: 10.16035/j.issn.1001-7283.2022.04.026

Previous Articles     Next Articles

Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field

Wang Yuanyuan1,2(), Gu Zihan1,3(), Chen Pingping1, Yi Zhenxie1()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2Liling Agriculture and Rural Bureau, Liling 412200, Hunan, China
    3Hengyang Agriculture and Rural Bureau, Hengyang 421000, Hunan, China
  • Received:2021-04-07 Revised:2021-10-11 Online:2022-08-15 Published:2022-08-22
  • Contact: Yi Zhenxie E-mail:529348432@qq.com;594252054@qq.com;yizhenxie@126.com

Abstract:

The growth duration, yield, economic benefit and Cd content in agro-products were compared among three types of planting patterns, double-cropping rice (RR), spring maize-late rice (MR), early rice-autumn maize (RM), to discuss the feasibility of seasonal substituted planting of maize to rice in Cd-contaminated paddy field in Hunan province. The results showed that the late-season crops of three patterns could mature in late October from the view of the growth season, and all three modes were suitable for planting in double-cropping rice area in Hunan province. The total yields of two season crop of RR and MR were higher in 2015 and 2016, respectively, while the difference was not significant. Compared with the net income of RR, that of MR and RM declined in 2015, while significantly increased in 2016, and the total income of two years showed the trend of MR > RM > RR, and the net income of single labor force in MR and RM were higher than that of RR. Cd contents in brown rice in RM and MR had a decreasing trend compared with that of RR, especially in late rice in 2016, which decreased from 0.823mg/kg to 0.621mg/kg). Cd content in rice grain was at 0.231-0.823mg/kg, while Cd content in maize grain was 0.036-0.081mg/kg. Rice had a lot higher Cd accumulation than maize, and late rice had a substantially higher Cd accumulation than early rice. The total Cd accumulation of two-season crops in the three patterns indicated the trend of RR > MR > RM with a significant difference. It could be seen that the double cropping rice pattern could be replaced with spring maize-late rice on early rice-autumn maize patterns in terms of growth season, yield, net income, and grain Cd content. The spring maize-late rice pattern should be favoured due to the huge amount of aboveground Cd elimination.

Key words: Cadmium polluted paddy field, Maize, Rice, Planting pattern, Substituted planting, Feasibility

Table 1

"

种植模式
Planting pattern
2015 2016
早季作物
Early season crop
晚季作物
Late season crop
早季作物
Early season crop
晚季作物
Late season crop
播种Sowing 成熟Maturity 播种Sowing 成熟Maturity 播种Sowing 成熟Maturity 播种Sowing 成熟Maturity
双季稻
Double-cropping rice
03-22 07-03 06-11 10-18 03-24 07-09 06-12 10-17
早稻―秋玉米
Early rice-autumn maize
03-22 07-03 07-10 10-18 03-24 07-09 07-15 10-28
春玉米―晚稻
Spring maize-late rice
03-26 07-18 06-11 10-22 03-26 07-19 06-12 10-23

Table 2

Yield of crops under different planting patterns kg/hm2"

种植模式
Planting pattern
2015 2016
早季作物
Early season crop
晚季作物
Late season crop
全年
Whole year
早季作物
Early season crop
晚季作物
Late season crop
全年
Whole year
双季稻
Double-cropping rice
7210.8 7739.4 14 950.2a 5233.7 6298.3 11 532.0a
早稻―秋玉米
Early rice-autumn maize
7188.5 7598.6 14 787.1a 5469.5 5756.6 11 226.1a
春玉米―晚稻
Spring maize-late rice
6818.0 7181.9 13 999.9a 5395.6 6571.9 11 967.5a

Table 3

Cadmium contents in various organs of rice at maturity stage in different planting patterns mg/kg"

器官
Organ
2015 2016
早稻Early rice 晚稻Late rice 早稻Early rice 晚稻Late rice
双季稻
RR
早稻―秋玉米
RM
双季稻
RR
春玉米―晚稻
MR
双季稻
RR
早稻―秋玉米
RM
双季稻
RR
春玉米―晚稻
MR
根Root 8.022a 7.414ab 6.809b 6.197b 7.088d 10.810c 19.893a 15.538b
茎Stem 3.575c 3.263c 5.132a 4.536b 4.474c 4.540c 9.950a 6.226b
叶Leaf 1.038a 0.997a 1.085a 0.976a 0.526d 0.616c 1.686a 1.348b
枝梗Branch 0.520b 0.496b 0.661a 0.657a 0.259d 0.328c 1.303a 0.990b
谷壳Chaff 0.537a 0.514a 0.327b 0.302b 0.387d 0.424c 1.209a 0.515b
糙米Brown rice 0.344a 0.332a 0.244b 0.231b 0.426c 0.429c 0.823a 0.621b
精米Milled rice 0.212a 0.201a 0.366c 0.361c 0.775a 0.463b
糠层Bran layer 0.310a 0.288b 0.608c 0.611c 1.442a 0.827b

Table 4

Cadmium contents in different organs of maize at maturity stage mg/kg"

器官
Organ
春玉米Spring maize 秋玉米Autumn maize
2015 2016 2015 2016
根Root 5.275a 3.001c 2.408d 3.932b
茎Stem 0.957b 0.941b 1.329a 1.295a
叶Leaf 0.901a 0.823b 0.457c 0.973a
籽粒Seed 0.036b 0.071a 0.037b 0.081a

Table 5

Cadmium accumulation of upland of crops under different planting patterns g/hm2"

种植模式
Planting pattern
2015 2016
早季Early season 晚季Late season 合计Total 早季Early season 晚季Late season 合计Total
双季稻RR 18.25 23.79 42.04a 14.76 46.54 61.30a
早稻―秋玉米RM 15.47 4.31 19.78c 16.75 2.43 19.18c
春玉米―晚稻MR 3.60 23.35 26.95b 2.92 28.30 31.22b

Table 6

"

项目
Item
双季稻Early rice-late rice 早稻―秋玉米Early rice-autumn maize 春玉米―晚稻Spring maize-late rice
早稻
Early rice
晚稻
Late rice
早稻
Early rice
秋玉米
Autumn maize
春玉米
Spring maize
晚稻
Late rice
农资
Production goods
种子 1125 1050 1125 720 720 1050
化肥 1860 1860 1860 2160 2160 1860
农药 600 600 600 200 200 600
机械Machine 收获 1200 1200 1200 0 0 1200
耕地 1350 1350 1350 1350 1350 1350
劳动力Labour 播种 900 900 900 480 480 900
移栽 1800 1800 1800 0 0 1800
间苗 0 0 0 240 240 0
喷药 900 900 900 600 600 900
施肥 600 600 600 720 720 600
收获 0 0 600 600 0
单季投入Single season input 10 335 10 260 10 335 7070 7070 10 260
全年投入Whole year input 20 595a 17 405b 17 330b

Table 7

Output and net income of different planting patterns"

年份
Year
种植模式
Planting
pattern
作物
Crop
投入(元/hm2
Input value
(yuan/hm2)
实际产量
Actual yield
(kg/hm2)
产值(元/hm2
Output value
(yuan/hm2)
纯收入(元/hm2
Net income
(yuan/hm2)
总纯收入(元/hm2
Total net income
(yuan/hm2)
2015 双季稻 早稻 10 335 7210.8 17 594.2 7259.2 16 347.7a
晚稻 10 260 7739.4 19 348.5 9088.5
早稻―秋玉米 早稻 10 335 7188.5 17 540.0 7205.0 15 332.1ab
秋玉米 7070 7598.6 15 197.1 8127.1
春玉米―晚稻 春玉米 7070 6818.0 13 636.0 6566.0 14 260.8b
晚稻 10 260 7181.9 17 954.8 7694.8
2016 双季稻 早稻 10 335 5233.7 12 770.2 2435.2 7920.9c
晚稻 10 260 6298.3 15 745.7 5485.7
早稻―秋玉米 早稻 10 335 5469.5 13 345.7 3010.7 9756.5b
秋玉米 7070 5756.6 13 815.8 6745.8
春玉米―晚稻 春玉米 7070 5395.6 12 949.5 5879.5 12 049.2a
晚稻 10 260 6571.9 16 429.7 6169.7

Table 8

Ratio of net income to labour number of different planting patterns"

年份
Year
种植模式
Planting pattern
纯收入(元/hm2
Net income (yuan/hm2)
劳动力数(个/hm2
Labour number (number/hm2)
纯收入/劳动力数(元/个)
Net income/labour number (yuan/number)
2015 双季稻 16 347.7 70.0 233.5
早稻―秋玉米 15 332.1 57.0 269.0
春玉米―晚稻 14 260.8 57.0 250.2
2016 双季稻 7920.9 70.0 113.2
早稻―秋玉米 9756.5 57.0 171.2
春玉米―晚稻 12 049.3 57.0 211.4
[1] 王开勇, 于树, 瞿琨, 等. 水稻土中Cd、Cr、Hg、Pb污染元素的研究进展. 垦殖与耕作, 2005(2):43-45.
[2] 李一平, 颜新培, 黄仁志, 等. 重金属污染稻田桑树替代种植模式研究. 中国农学会耕作制度分会2016年学术年会论文摘要集, 2016.
[3] 高翔云, 汤志云, 李建和, 等. 国内土壤环境现状与防治措施. 江苏环境科技, 2014: 19(2):52-55.
[4] 李玲. 镉胁迫对陆地棉花生长发育、产量和品质的影响. 杭州:浙江大学, 2011.
[5] 曾希柏, 孙楠, 高菊生, 等. 双季稻田改制对土壤剖面构型及性质的影响. 应用生态学报, 2008, 19(5):1033-1039.
[6] 曾希柏, 孙楠, 高菊生, 等. 双季稻田改制对作物生长季土壤养分的影响. 中国农业科学, 2007, 40(6):1198-1205.
[7] Prasad R, Gangaiah B. Effect of crop residue management in rice-wheat cropping system on growth and yield of crops and on soil fertility. Experimental Agriculture, 1999, 34(4):427-435.
[8] Phillips I R. Phosphorus availability and sorption under alternating waterlogged and drying conditions. Communications in Soil Science and Plant Analysis, 1999, 29(19/20):3045-3059.
doi: 10.1080/00103629809370175
[9] Phillips I R. Nitrogen availability and sorption under alternation waterlogged and drying conditions. Communications in Soil Science and Plant Analysis, 1999, 30(1/2):1-20.
doi: 10.1080/00103629909370180
[10] 郭利双, 何叔军, 李景龙. 镉污染区棉花替代种植技术研究. 中国棉花, 2016,(11):5-8,4.
[11] 佘玮, 揭雨成, 邢虎成, 等. 苎麻耐镉品种差异及其筛选指标分析. 作物学报, 2011, 37(2):348-354.
[12] 谢运河, 纪雄辉, 彭华, 等. 镉污染稻田改制玉米的农产品质量安全研究. 农业现代化研究, 2014(5):658-662.
[1] Zhou Yujiao, Zhang Weiyang, Yang Jianchang. Research Advances on High Temperature Induced-Impairment in Spikelet-Opening and Pistil-Fertilization of Photo-Thermo-Sensitive Genic Male Sterile Rice Lines [J]. Crops, 2022, 38(4): 1-8.
[2] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[3] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[4] Zheng Siyi, Yang Ye, Song Yuanhui, Hua Qin, Lin Quanxiang, Zhang Haitao, Cheng Zhijun. Identification and Fine Mapping of Sugary Endosperm Mutant m5788 in Rice (Oryza sativa L.) [J]. Crops, 2022, 38(4): 14-21.
[5] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[6] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[7] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[8] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[9] Yang Chaozhen, Fang Haidong, Su Yan, Chen Xiaoyan, Liu Xiaoli, Yang Zhongyi. Study on Ecological and Geographic Distribution of Rice Planthopper Resistance Diversity of Rice Germplasms in Yunnan [J]. Crops, 2022, 38(3): 109-114.
[10] Ma Yihu, He Xianbiao, Qi Wen, Wang Xuhui, Chen Jian, Zhou Cui, Zhang Zhongxi. Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility [J]. Crops, 2022, 38(3): 115-124.
[11] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[12] Gao Jie, Li Siyu, Cheng Dayu, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Slow/Controlled Release Fertilizers on Rice Yield and Quality [J]. Crops, 2022, 38(3): 20-26.
[13] Su Yuting, Yuan Shuai, Li Yongsong, Cui Can, Chen Pingping, Wang Xiaoyu, Yi Zhenxie. Effects of Nitrogen Fertilizer Management on Yield and Lodging Resistance Properties of Double-Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2022, 38(3): 225-232.
[14] Du Haimeng, Wei Huanhe, Yu Qingyuan, Dai Qigen. Application Progress and Prospect of Rice Foliar Fertilizer [J]. Crops, 2022, 38(3): 33-38.
[15] Zhang Jun, Chen Shunquan, Zhang Wenqing, Li Gaochao, Bell. Adaptability of Ten Maize Varieties in Cameroon [J]. Crops, 2022, 38(3): 87-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!