Crops ›› 2022, Vol. 38 ›› Issue (3): 115-124.doi: 10.16035/j.issn.1001-7283.2022.03.017

Previous Articles     Next Articles

Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility

Ma Yihu1(), He Xianbiao1(), Qi Wen1, Wang Xuhui2, Chen Jian1, Zhou Cui1, Zhang Zhongxi1   

  1. 1Taizhou Academy of Agricultural Sciences of Zhejiang Province, Linhai 317000, Zhejiang, China
    2Agricultural Technology Extension Center of Jiaojiang District of Zhejiang Province, Taizhou 318000, Zhejiang, China
  • Received:2021-08-06 Revised:2021-09-02 Online:2022-06-15 Published:2022-06-20
  • Contact: He Xianbiao E-mail:mayihu522@aliyun.com;hexianbiao669689@163.com

Abstract:

To explore the nitrogen substitution ability and aftereffect fertility of agricultural waste materials, four equal nitrogen fertilization treatments were set in the early rice season: chemical fertilizer (CK), rice straw + chemical fertilizer (SF), water hyacinth + chemical fertilizer (HF) and broccoli stem and leaf + chemical fertilizer (BF). No nitrogen fertilizer control (CK0) was set up. In the late rice season, straw was returned to the field only in the SF, HF and BF treatments. Taizao 733 was used as early rice, Zhongzheyou 8 and Yongyou 1540 were used as late rice. The effects of different treatments on grain yield, quality and soil fertility were evaluated. The results showed that the combined application of agricultural waste materials and chemical fertilizer could improve the nitrogen use efficiency and increase grain yield. Compared with CK, the yield of late rice in SF, HF and BF treatments increased by 5.3%, 7.2% and 7.6%, respectively, and the annual yield increased by -1.7%, 3.5% and 8.1%, respectively. The combined application of agricultural waste materials and chemical fertilizer could improve the quality of milling, appearance, and taste, mainly by increasing brown rice rate, milled rice rate, and head rice rate, and reducing chalky grain rate, chalkiness (only Zhongzheyou 8) and protein content. The treatments of SF, HF and BF increased soil organic matter, total nitrogen, available phosphorus and available potassium, reduced soil bulk density and alleviated soil acidification. In summary, the combination of agricultural waste materials and chemical fertilizer was beneficial to high and stable grain yield of rice, and could improve rice quality and soil fertility. Among them, BF treatment was the best.

Key words: Agricultural waste materials, Reduction of chemical fertilizer, Double cropping late rice, Yield, Quality, Soil fertility

Table 1

Basic physio-chemical properties of initial test soil"

试验点
Experiment site
土壤容重
Soil bulk density
(g/cm3)
pH 有机质
Organic matter
(g/kg)
全氮
Total N
(g/kg)
碱解氮
Available N
(mg/kg)
有效磷
Available P
(mg/kg)
速效钾
Available K
(mg/kg)

Cd
(mg/kg)
小溪Xiaoxi 1.25 5.66 32.40 2.17 88.50 33.23 104.91 0.23
前街Qianjie 1.27 5.72 31.61 2.12 81.31 28.01 101.62 0.24

Table 2

Nutrient content of different agricultural waste materials"

农业废弃物
Agricultural waste materials
含水量
Water content (%)
含C量(以干物质量计)
C content (g/kg)
含N量(以干物质量计)
N content (g/kg)
全磷
Total P (g/kg)
全钾
Total K (g/kg)
碳氮比
C/N
稻草Rice straw 41.87 544.10 9.94 2.86 23.30 54.7
水葫芦Water hyacinth 87.78 549.20 1.98 0.09 2.01 277.4
西兰花茎叶Stem and leaf of broccoli 88.37 538.10 4.21 1.15 5.75 127.8

Table 3

Fertilizer types and application amounts under different treatments"

稻季
Rice
season
处理
Treatment
农业废弃物类型及施用量
Type and application quantity
of agricultural waste material
化肥施用量
Amount of chemical fertilizer
application (kg/hm2)
总施氮量
Total N
(kg/hm2)
有机氮替代率
Rate of organic
nitrogen
substitution
(%)
类型
Type
施入量
Application quantity (t/hm2)
折合纯N
Amount to net N (kg/hm2)
N P2O5 K2O
早稻
Early
rice
CK0 0.0 0.0 0.0 101.3 121.5 0.0 0.0
CK 0.0 0.0 202.5 101.3 121.5 202.5 0.0
SF 稻草 9.1 52.5 150.0 101.3 121.5 202.5 25.9
HF 水葫芦 217.0 52.5 150.0 101.3 121.5 202.5 25.9
BF 西兰花茎叶 107.2 52.5 150.0 101.3 121.5 202.5 25.9
晚稻
Late
rice
CK0 0.0 0.0 0.0 120.0 192.0 0.0 0.0
CK 0.0 0.0 240.0 120.0 192.0 240.0 0.0
SF 稻草 11.7 67.5 172.5 120.0 192.0 240.0 28.1
HF 稻草 11.7 67.5 172.5 120.0 192.0 240.0 28.1
BF 稻草 11.7 67.5 172.5 120.0 192.0 240.0 28.1

Table 4

Grain yield and its components of continuous cropping late rice under different fertilization treatments"

试验点
Experiment
site
品种
Variety
处理
Treatment
株高
Plant height
(cm)
有效穗数
Effective
panicles
(×104/hm2)
穗粒数
Spikelets
总颖花量
Total amount
of spikelets
(×106/hm2)
结实率
Seed-
setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical
yield
(t/hm2)
产量
Yield
(t/hm2)
小溪
Xiaoxi
中浙优8号 CK0 116.1±1.5d 189.5±2.5c 165.2±3.5c 313.1±6.9d 91.1±1.9a 25.81±0.16a 7.36±0.09c 7.12±0.12c
CK 118.0±2.1b 254.6±4.6b 172.8±5.2b 440.0±11.3c 87.3±2.1b 25.76±0.13a 9.90±0.15b 9.48±0.19b
SF 118.5±0.8b 263.8±3.2a 173.3±2.5b 457.1±15.6b 87.6±1.3b 25.99±0.11a 10.41±0.14ab 10.28±0.15a
HF 117.1±2.4c 268.4±2.4a 170.1±3.5b 456.5±12.4b 86.8±1.7b 25.73±0.07a 10.20±0.09ab 10.16±0.11a
BF 122.1±1.2a 265.6±5.6a 178.4±3.9a 473.8±14.6a 88.4±0.8b 25.67±0.18a 10.75±0.11a 10.39±0.09a
甬优1540 CK0 96.8±2.0b 186.9±2.1d 175.9±5.1b 328.8±9.9d 93.6±1.8a 24.38±0.15a 7.50±0.17d 7.32±0.17c
CK 97.1±1.9b 223.6±2.4c 184.6±4.9a 412.7±6.1c 91.8±1.5bc 24.49±0.14a 9.28±0.20c 9.44±0.18b
SF 99.9±0.2a 227.9±6.1c 186.8±5.3a 425.7±16.3b 92.6±1.9ab 24.59±0.11a 9.70±0.18b 9.59±0.10ab
HF 99.9±1.8a 253.8±3.1a 177.9±3.5b 451.5±7.9a 91.9±1.2bc 24.46±0.09a 10.15±0.13a 9.87±0.12a
BF 100.4±0.8a 247.5±3.9b 183.8±3.4a 454.9±14.9a 90.8±1.6c 24.31±0.15a 10.04±0.14ab 9.76±0.08a
前街
Qianjie
中浙优8号 CK0 111.3±1.0c 184.6±4.8c 169.2±5.7d 312.4±12.4c 90.6±0.9a 25.97±0.16a 7.35±0.07d 7.23±0.17d
CK 120.6±2.2a 258.4±4.8b 170.2±4.9c 439.7±15.3b 85.5±1.6b 25.90±0.13a 9.75±0.11c 9.23±0.04c
SF 118.1±1.9b 258.8±5.3b 172.0±7.1b 445.1±13.7b 86.6±2.1b 25.93±0.15a 10.01±0.15bc 9.94±0.12b
HF 119.3±1.6ab 272.2±6.1a 171.4±5.9b 466.6±16.2a 87.8±1.8ab 25.69±0.09a 10.53±0.04ab 10.27±0.11ab
BF 120.3±1.2a 263.9±2.9b 179.9±3.9a 474.8±21.3a 89.4±2.1ab 25.61±0.10a 10.87±0.15a 10.31±0.09a
甬优1540 CK0 94.6±0.7c 183.6±4.9e 182.6±2.8b 335.3±21.1d 95.5±2.0a 24.28±0.06a 7.77±0.12c 7.71±0.13c
CK 98.3±1.9ab 226.7±4.2d 184.5±4.3b 418.2±14.9c 90.9±1.1b 24.65±0.12a 9.37±0.05b 9.15±0.18b
SF 97.5±0.6b 231.4±3.5c 191.5±3.9a 443.2±20.8b 91.0±2.1b 24.75±0.17a 9.99±0.12a 9.49±0.07a
HF 98.9±1.8ab 258.9±2.9a 175.7±1.9c 454.9±15.7a 90.7±1.8b 24.22±0.08a 9.99±0.16a 9.68±0.17a
BF 99.8±1.7a 250.2±5.8b 185.4±2.3b 463.9±21.7a 90.0±1.7b 24.11±0.06a 10.07±0.13a 9.70±0.16a

Table 5

Total annual yield of rice and nitrogen utilization rate under different fertilization treatments"

试验点
Experiment
site
处理
Treatment
早稻产量
Yield of
early rice
(t/hm2)
连作晚稻产量
Yield of late rice
for continuous
cropping (t/hm2)
周年产量
Annual total
yield
(t/hm2)
无机氮肥偏生产力
Inorganic N
fertilizer partial
productivity (kg/kg)
总氮肥偏生产力
Total N fertilizer
partial productivity
(kg/kg)
氮肥农学利用率
Agronomic utilization
efficiency of N
fertilizer (kg/kg)
小溪
Xiaoxi
CK0 6.45d 7.22c 13.67d
CK 7.69b 9.46b 17.15c 38.94b 38.94a 8.26c
SF 7.09c 9.94a 17.03c 54.15a 39.27a 8.60c
HF 7.50b 10.02a 17.52b 55.37a 40.17a 9.49b
BF 8.41a 10.08a 18.49a 57.63a 41.83a 11.16a
前街
Qianjie
CK0 6.39c 7.47d 13.86c
CK 7.64b 9.19c 16.83b 38.10b 38.10a 6.83c
SF 6.67c 9.71b 16.38b 52.35a 37.95a 6.68c
HF 7.66b 9.98a 17.64a 55.58a 40.33a 9.06b
BF 8.25a 10.00a 18.25a 56.97a 41.35a 10.08a

Table 6

Later rice growth stages under different fertilization treatments"

品种
Variety
处理
Treatment
播种期
(月-日)
Sowing
(month-day)
移栽期
(月-日)
Transplanting
(month-day)
始穗期
(月-日)
Initial heading
(month-day)
齐穗期
(月-日)
Full heading
(month-day)
成熟期
(月-日)
Maturity
(month-day)
播种至齐穗
Sowing-full
heading (d)
齐穗至成熟
Full heading-
maturity (d)
全生育期
Growth
duration
(d)
中浙优8号
Zhongzheyou 8
CK0 06-20 07-18 09-17 09-19 11-07 91 49 140
CK 06-20 07-18 09-20 09-23 11-12 95 50 145
SF 06-20 07-18 09-19 09-22 11-12 94 51 145
HF 06-20 07-18 09-20 09-23 11-13 95 51 146
BF 06-20 07-18 09-20 09-23 11-13 95 51 146
甬优1540
Yongyou 1540
CK0 06-20 07-18 09-03 09-05 10-31 77 56 133
CK 06-20 07-18 09-04 09-07 11-03 79 57 136
SF 06-20 07-18 09-04 09-07 11-03 79 57 136
HF 06-20 07-18 09-05 09-08 11-04 80 57 137
BF 06-20 07-18 09-05 09-08 11-04 80 57 137

Table 7

Ability to tiller and earbearing tiller percentage under different fertilization treatments"

试验点
Experiment
site
品种
Variety
处理
Treatment
落田苗
Basic seedlings
number (×104/hm2)
最高苗
The highest tillering
number (×104/hm2)
单株最大分蘖数
The maximum tillering
number per plant
有效穗数
Effective panicles
(×104/hm2)
茎蘖成穗率
Earbearing tiller
percentage (%)
小溪
Xiaoxi
中浙优8号 CK0 61.9±1.9a 247.5±12.2c 17.6±0.1c 189.5±2.5c 76.6±2.3a
CK 63.9±2.8a 366.0±6.9b 26.5±0.9b 254.6±4.6b 69.6±2.1c
SF 66.7±1.3a 373.6±5.9b 27.0±0.7b 263.8±3.2a 70.6±1.9bc
HF 63.6±2.3a 386.4±7.8a 28.0±1.3a 268.4±2.4a 69.5±2.7c
BF 63.0±1.0a 367.2±11.2b 26.5±1.2b 265.6±5.6a 72.3±1.6b
甬优1540 CK0 35.9±1.6a 248.5±12.7d 17.6±0.5d 186.9±2.1d 75.2±1.7a
CK 32.6±1.3a 301.9±10.9c 21.6±0.5c 223.6±2.4c 74.1±2.1ab
SF 35.7±1.6a 331.5±15.2b 23.9±0.2b 227.9±6.1c 68.8±1.3c
HF 32.5±1.9a 352.8±11.1a 25.5±0.9a 253.8±3.1a 71.9±1.2b
BF 33.3±1.8a 346.8±12.0a 25.0±0.5a 247.5±3.9b 71.4±1.9bc
前街
Qianjie
中浙优8号 CK0 63.8±2.9a 264.9±11.6c 18.9±0.3c 184.6±4.8c 69.7±2.0ab
CK 61.5±1.2a 364.9±12.3b 26.4±0.1b 258.4±4.8b 70.8±1.5a
SF 62.6±3.1a 380.9±11.9a 27.6±0.4a 258.8±5.3b 67.9±1.3b
HF 65.2±2.8a 383.8±6.1a 27.8±0.2a 272.2±6.1a 70.9±1.9a
BF 64.3±3.1a 374.8±9.9a 27.1±0.7a 263.9±2.9b 70.4±2.6a
甬优1540 CK0 33.1±2.0a 236.5±8.3c 16.7±0.4c 183.6±4.9e 77.6±2.9a
CK 31.2±3.1a 309.1±14.1b 22.2±0.2b 226.7±4.2d 73.3±1.0bc
SF 33.7±1.8a 311.2±11.4b 22.3±0.1b 231.4±3.5c 74.4±2.5b
HF 34.4±2.4a 345.6±14.9a 24.9±0.8a 258.9±2.9a 74.9±2.8b
BF 34.8±2.6a 348.9±10.9a 25.2±0.3a 250.2±5.8b 71.7±1.7c

Table 8

Effects of different fertilization treatments on quality indexes of late rice"

品种
Variety
处理
Treatment
糙米率
Brown rice
percentage (%)
精米率
Milled rice
percentage (%)
整精米率
Head rice
percentage (%)
粒长
Kernel length
(mm)
长宽比
Length-width
ratio
垩白粒率
Chalky
percentage (%)
垩白度
Chalkiness
(%)
中浙优8号
Zhongzheyou 8
CK0 83.3d 75.2d 60.2b 7.0a 3.2a 20a 3.1a
CK 83.8c 75.6c 60.2b 7.0a 3.2a 18ab 2.9a
SF 84.1bc 75.8bc 60.3b 7.0a 3.2a 14c 1.5d
HF 84.2b 76.0b 60.9a 7.0a 3.2a 17b 2.1b
BF 84.9a 76.3a 60.4b 7.0a 3.2a 13c 1.8c
甬优1540
Yongyou 1540
CK0 83.1c 75.6d 73.1b 5.8a 2.3a 40a 5.8a
CK 84.0b 76.5c 73.2b 5.9a 2.4a 19c 1.8c
SF 84.4a 76.9b 73.5a 5.8a 2.3a 28b 3.3b
HF 84.1b 77.0ab 73.5a 5.9a 2.4a 22c 3.7b
BF 84.5a 77.3a 73.6a 5.8a 2.3a 37a 3.9b
品种
Variety
处理
Treatment
透明度
Transparency
碱消值
Alkali spreading
value
胶稠度
Gel consistency
(mm)
直链淀粉含量
Amylose
content (%)
蛋白质含量
Protein
content (%)
综合判定等级
Comprehensive
evaluation grade
中浙优8号
Zhongzheyou 8
CK0 2a 6.3a 72a 15.8c 7.8d
CK 2a 6.7a 71a 15.9c 8.5a
SF 2a 6.7a 72a 16.9a 8.0c
HF 2a 6.8a 70a 16.7ab 8.2b
BF 2a 6.5a 72a 16.5b 7.9cd
甬优1540
Yongyou 1540
CK0 2a 7.0a 76a 15.7a 7.9d 普通
CK 2a 7.0a 75a 15.4b 8.4a
SF 2a 7.0a 74ab 15.5ab 8.2b
HF 2a 6.9a 72b 15.5ab 8.0cd
BF 2a 6.8a 72b 15.6ab 8.1bc

Table 9

Effects of different fertilization treatments on soil physicochemical properties"

处理
Treatment
土壤容重
Soil bulk density
(g/cm3)
pH 有机质
Organic matter
(g/kg)
全氮
Total N
(g/kg)
硝态氮
NO3--N
(mg/kg)
铵态氮
NH4+-N
(mg/kg)
有效磷
Available P
(mg/kg)
速效钾
Available K
(mg/kg)
基础土壤
Foundation soil
1.25 5.66 32.4 2.17 7.23 8.29 33.23 104.91
CK0 1.25a 5.41a 30.9c 2.10c 7.36a 9.64a 31.92c 98.92b
CK 1.26a 5.39a 32.3bc 2.21bc 7.42a 9.32a 33.93b 108.94ab
SF 1.21b 5.49a 34.1ab 2.29b 7.58a 9.15a 33.28b 116.80a
HF 1.15c 5.55a 35.6a 2.33ab 7.32a 9.49a 36.06a 119.45a
BF 1.17c 5.53a 34.6ab 2.45a 8.28a 9.17a 36.76a 121.33a

Table 10

Correlation analysis of soil physicochemical properties and grain yield of rice"

土壤理化性质
Soil physicochemical properties
水稻周年产量
Annual total yield of rice
P
土壤容重Soil bulk density -0.660 0.225
pH 0.649 0.236
有机质Organic matter 0.832* 0.041
全氮Total N 0.910* 0.032
硝态氮NO3--N 0.554 0.333
铵态氮NH4+-N -0.704 0.184
有效磷Available P 0.897* 0.039
速效钾Available K 0.925* 0.024
[1] Raoufi R S, Soufizadeh S, Larijani B A, et al. Simulation of growth and yield of various irrigated rice (Oryza sativa L.) genotypes by AquaCrop under different seedling ages. Natural Resource Modelling, 2018, 31(2):1-23.
[2] Yu Y Q, Huang Y, Zhang W. Changes in rice yields in China since 1980 associated with cultivar improvement,climate and crop management. Field Crops Research, 2012, 136:65-75.
doi: 10.1016/j.fcr.2012.07.021
[3] Peng S B, Roland J B, Huang J L, et al. Improving nitrogen fertilization in rice by site-specific N management. A review. Agronomy for Sustainable Development, 2010, 30(3):649-656.
doi: 10.1051/agro/2010002
[4] Xue Y G, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013, 53(1):271-284.
doi: 10.2135/cropsci2012.06.0360
[5] 蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题. 植物营养与肥料学报, 2014, 20(1):1-6.
[6] 王元元, 李超, 刘思超, 等. 有机肥对水稻产量、品质及土壤特性的影响研究进展. 中国稻米, 2019, 25(1):15-20.
[7] 王红妮, 王学春, 黄晶, 等. 秸秆还田对土壤还原性和水稻根系生长及产量的影响. 农业工程学报, 2017, 33(20):116-126.
[8] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24(1):1-21.
[9] 陈静蕊, 陈晓芬, 秦文婧, 等. 紫云英还田对江西早稻季田面水氮磷动态的影响. 生态环境学报, 2020, 29(7):1352-1358.
[10] 黄璐璐, 金海洋, 王站付, 等. 化肥减量配施有机肥对水稻产量及氮肥利用率的影响. 安徽农业科学, 2021, 49(1):138-142.
[11] 姚冬辉, 魏宗强, 颜晓, 等. 商品有机肥替代部分化肥对双季水稻产量及重金属含量的影响. 江西农业大学学报, 2020, 42(5):863-871.
[12] 高菊生, 黄晶, 董春华, 等. 长期有机无机肥配施对水稻产量及土壤有效养分影响. 土壤学报, 2014, 51(2):314-324.
[13] 侯红乾, 冀建华, 刘秀梅, 等. 不同比例有机肥替代化肥对水稻产量和氮素利用率的影响. 土壤, 2020, 52(4):758-765.
[14] 陈琨, 喻华, 上官宇先, 等. 有机无机肥配施对冬水田水稻产量和耕层土壤性质的影响. 中国稻米, 2020, 26(2):32-35,40.
[15] 马义虎, 顾道健, 刘立军, 等. 玉米秸秆源有机肥对水稻产量与温室气体排放的影响. 中国水稻科学, 2013, 27(5):520-528.
[16] 宓文海, 吴良欢, 马庆旭, 等. 有机物料与化肥配施提高黄泥田水稻产量和土壤肥力. 农业工程学报, 2016, 32(13):103-108.
[17] 方华舟, 项智锋. 水稻秸秆堆沤肥对优质水稻产量及质量的影响. 中国土壤与肥料, 2019(1):62-70.
[18] 葛立立, 马义虎, 卞金龙, 等. 玉米秸秆还田与实地氮肥管理对水稻产量与米质的影响. 中国水稻科学, 2013, 27(2):153-160.
[19] 聂俊, 邱俊荣, 史亮亮, 等. 有机肥和化肥配施对抛栽水稻产量、品质及钾吸收转运的影响. 江苏农业科学, 2016, 44(2):122-125.
[20] 崔新卫, 张杨珠, 高菊生, 等. 长期不同施肥处理对红壤稻田土壤性质及晚稻产量与品质的影响. 华北农学报, 2019, 34(6):190-197.
[21] 邱才飞, 邵彩虹, 王少先, 等. 废白土基有机肥对水稻生长、产量及品质的影响. 江西农业学报, 2020, 2(3):14-18.
[22] Cui X W, Zhang Y Z, Gao J S, et al. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Scientific Reports, 2018, 8(1):16554.
doi: 10.1038/s41598-018-34685-0
[23] 俄胜哲, 丁宁平, 李利利, 等. 长期施肥条件下黄土高原黑垆土作物产量与土壤碳氮的关系. 应用生态学报, 2018, 29(12):4047-4050.
[24] 吴玉红, 郝兴顺, 田霄鸿, 等. 秸秆还田与化肥减量配施对稻茬麦土壤养分、酶活性及产量影响. 西南农业学报, 2018, 31(5):998-1005.
[25] 黄容, 高明, 万毅林, 等. 秸秆还田与化肥减量配施对稻-菜轮作下土壤养分及酶活性的影响. 环境科学, 2016, 37(11):4446-4456.
[26] 温延臣, 张曰东, 袁亮, 等. 商品有机肥替代化肥对作物产量和土壤肥力的影响. 中国农业科学, 2018, 51(11):2136-2142.
[27] 侯红乾, 刘秀梅, 刘光荣, 等. 有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响. 中国农业科学, 2011, 44(3):516-523.
[28] 张成兰, 吕玉虎, 刘春增, 等. 减量化肥配施紫云英对水稻产量稳定性的影响. 核农学报, 2021, 35(3):704-713.
[29] 王保君, 程旺大, 陈贵, 等. 氮肥调控对浙北地区秸秆全量还田稻田土壤及水稻产量的影响. 浙江农业学报, 2020, 32(2):183-190.
[30] 毛妍婷, 刘宏斌, 陈安强, 等. 长期施用有机肥对减缓菜田耕层土壤酸化的影响. 生态环境学报, 2020, 29(9):1784-1791.
[1] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[2] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[3] Feng Changhui, Jiao Chunhai, Zhang Youchang, Bie Shu, Qin Hongde, Wang Qiongshan, Zhang Jiaohai, Wang Xiaogang, Xia Songbo, Lan Jiayang, Chen Quanqiu. Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design [J]. Crops, 2022, 38(5): 13-21.
[4] Li Yuexian, Duan Chunfang, Jiang Tailing, Liu Qian, Yan Wei, Xiong Xiankun, Zhang Linhui, Song Jiming, Shen Shaobin, Zhou Yingchun, Liu Guanghua. The Influences of Different Altitudes Gradients on Growth and Rhizome Quality of Cassava in Yunnan Province [J]. Crops, 2022, 38(5): 153-159.
[5] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[6] Zhang Xi, Xie Jin, Huang Hao, Gao Renji, Lu Chao, Zhou Yilin, Liang Zengfa, Wang Wei. Effects of Nitrogen Fertilizer Operation and Plant Spacing on Yield and Quality of Yunyan 116 in Pu’er Tobacco Area [J]. Crops, 2022, 38(5): 188-194.
[7] Shi Bixian, Tao Jianfei, Gao Yan, Xie Huihong, Abulimiti·Aierken , Cheng Pingshan, Maitituersun·Sadike , Sha Hong. Effects of Different Planting Densities on the Morphological Traits and Yields of Three Confectionery Sunflower Varieties [J]. Crops, 2022, 38(5): 195-200.
[8] Xu Min, Jin Lulu, Li Ruichun, Sun Liyuan, Wang Zisheng. Study on Cotton Chemical Topping in Liaohe Cotton Area [J]. Crops, 2022, 38(5): 201-207.
[9] Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220.
[10] Zhang Chonghua, Duan Licheng, Wang Shangming, Zhang Qingxia, Wang Chengzi, Wu Fengyu, Yang Lin. Effects of Sowing Date on Late-Rice Yield and Utilization of Heat-Light Resources in Jiangxi Province [J]. Crops, 2022, 38(5): 229-234.
[11] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[12] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[13] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[14] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[15] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!