Crops ›› 2022, Vol. 38 ›› Issue (3): 33-38.doi: 10.16035/j.issn.1001-7283.2022.03.005

Previous Articles     Next Articles

Application Progress and Prospect of Rice Foliar Fertilizer

Du Haimeng(), Wei Huanhe, Yu Qingyuan, Dai Qigen()   

  1. Rice Industry Engineering Technology Research Institute, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2022-01-05 Revised:2022-02-19 Online:2022-06-15 Published:2022-06-20
  • Contact: Dai Qigen E-mail:121023250@qq.com;qgdai@yzu.edu.cn

Abstract:

This article discusses the foliar fertiliser development process, its impact on rice yield and quality enhancement, as well as current issues and development trends. Rice foliar fertiliser has been shown to boost rice output, improve rice quality, and minimise heavy metal pollution, particularly cadmium pollution, in the field. In recent years, China has encouraged the use of foliar fertiliser on rice in a big way, and there are a lot of products, but the quality is inconsistent, and the spraying method still needs to be improved. In the future development, the research and development of functional foliar fertilizer products should be strengthened, product quality should be improved, and fertilizer and pesticide mixed spraying technology focusing on drones should be promoted to improve the application effect.

Key words: Foliar fertilizer, Rice, Fertilizer application

Table 1

Development history of foliar fertilizer"

时间Time 发展阶段Development stage 特点Trait
18世纪The 18th century 萌芽 河泥粪等原始材料施用
20世纪40-60年代The 1940s to 1960s 初期 主要是无机盐类,养分浓度低,吸收不稳定
20世纪60-90年代The 1960s to 1990s 中期 加入助剂,种类多样,提高了浓度,出现作物专用配方
20世纪90年代以后After the 1990s 成熟 综合发展,多功能化
[1] 辛良杰, 李秀彬. 近年来我国南方双季稻区复种的变化及其政策启示. 自然资源学报, 2009, 24(1):58-65.
[2] 秦猛, 刘丽华, 郑桂萍, 等. 不同叶面肥及施用时期对水稻穗部性状及产量,品质的影响. 河南农业科学, 2020, 49(9):20-26.
[3] 高贤彪, 卢丽萍. 新型肥料施用技术. 济南: 山东科学技术出版社, 1997:190-191.
[4] 王祖义. 磷酸二氢钾铵及叶肥一号的肥效. 浙江化工, 1981(2):24-27.
[5] 葛建军, 程光明, 夏桂平. 叶面肥的种类与发展趋势探析. 现代农业科技, 2008(23):367-368.
[6] 肖艳, 唐永康, 曹一平, 等. 表面活性剂在叶面肥中的应用与进展. 磷肥与复肥, 2003(4):14-15,68.
[7] 李婷婷, 胡钧铭, 韦彩会, 等. 水稻叶片营养吸收机制及专用叶面肥发展趋势. 江苏农业科学, 2016, 44(12):12-16.
[8] 于广武, 何长兴, 陶国臣, 等. 可溶性叶面肥及其发展趋势——黄萎叶喷剂的研究新进展. 腐植酸, 2006(3):9-14.
[9] Bukovac M J, Wittwer S H, Tukey H B. Anesthetization by di-ethyl ether and the transport of foliar applied radiocalcium. Plant Physiology, 1956, 31(3):254-255.
doi: 10.1104/pp.31.3.254 pmid: 16654875
[10] Hnsvark O N, Wittwer S H, Tukey H B. The metabolism of foliar-applied urea. i. relative rates of CO2 production by certain vegetable plants treated with labeled urea. Plant Physiology, 1953, 28(1):70-76.
doi: 10.1104/pp.28.1.70
[11] Mecklenburg R A, Tukey H B. Influence of foliar leaching on root uptake and translocation of calcium-45 to the stems and foliage of Phaseolus vulgaris. Plant Physiology, 1964, 39(4):533-536.
doi: 10.1104/pp.39.4.533 pmid: 16655956
[12] 王少鹏, 洪煜丞, 黄福先, 等. 叶面肥发展现状综述. 安徽农业科学, 2015, 43(4):96-98.
[13] 张静. 叶面肥及其在作物上的应用. 安徽农学通报, 2007, 13(7):143-144.
[14] 白玉超, 崔国贤, 马渊博, 等. 苎麻叶面施肥研究进展. 中国麻业科学, 2012, 34(3):142-145,120.
[15] 张志斌, 纳添仓. 作物叶面肥施用技术. 现代农业科技, 2009(22): 273,275.
[16] 李永旗, 李鹏程, 刘爱忠, 等. 棉花叶面施肥研究进展. 中国农学通报, 2014, 30(3):15-19.
[17] 李燕婷, 李秀英, 肖艳, 等. 叶面肥的营养机理及应用研究进展. 中国农业科学, 2009, 42(1):162-172.
[18] 雷鸣, 邓思涵, 陈聪颖, 等. 一种增产降镉的水稻叶面肥及其使用方法:中国, 201910510729.6. 2019-06-13.
[19] 李婷婷, 何铁光, 胡钧铭, 等. 功能型叶面肥对杂交水稻叶片生理特性和产量的影响. 杂交水稻, 2017, 32(6):55-58.
[20] 王康, 吴家旺, 戴辉, 等. 沼液叶面肥对水稻生长的影响. 江苏农业科学, 2019, 47(15):126-129.
[21] 魏丹, 杨谦, 迟凤琴, 等. 叶面喷施硒肥对水稻含硒量及产量的影响. 土壤肥料, 2005(1):39-41.
[22] 樊俊, 郑诗樟, 胡红青, 等. 不同专用叶面肥对水稻和柑橘品质影响的初步研究. 湖北农业科学, 2010, 49(3):553-557.
[23] Ram H, Rashid A, Zhang W, et al. Biofortification of wheat,rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant and Soil, 2016, 403(1/2):1-13.
doi: 10.1007/s11104-016-2919-9
[24] 廖文强. 锌肥对水稻产量和籽粒锌含量的影响研究. 南京:南京农业大学, 2013.
[25] 张珍淑, 漆光成, 杨培权, 等. 基施锌肥对水稻产量影响试验初探. 安徽农学通报, 2014, 20(6):84-85.
[26] 刘玉兰, 汪勇, 范文忠, 等. 叶面喷施光碳核肥对水稻产量和品质的影响. 河南农业科学, 2020, 49(10):20-25.
[27] 孔令国, 汪永辉, 韩晓东, 等. 禾稼春叶面肥对不同氮素水平下水稻生长及大米品质的影响. 江苏农业学报, 2018, 34(4):790-798.
[28] 吕倩, 吴良欢, 徐建龙, 等. 叶面喷施氨基酸铁肥对稻米铁含量和营养品质的影响. 浙江大学学报(农业与生命科学版), 2010, 36(5):60-66.
[29] Broadley M R, White P J, Hammond J P, et al. Zinc in plants. New Phytologist, 2007, 173:677-702.
doi: 10.1111/j.1469-8137.2007.01996.x pmid: 17286818
[30] Wessells K R, Brown K H. Estimating the global prevalence of zinc deficiency:results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE, 2012, 7:e50568.
doi: 10.1371/journal.pone.0050568
[31] Graham R D, Ascher J S, Hynes S C. Selection of zinc efficient cereal genotypes for soils of low zinc status. Plant Soil, 1992, 146:241-250.
doi: 10.1007/BF00012018
[32] Phattarakul N, Rerkasem B, Li L J, et al. Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil, 2012, 361:131-141.
doi: 10.1007/s11104-012-1211-x
[33] Zou C Q, Zhang Y Q, Rashid A, et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil, 2012, 361:119-130.
doi: 10.1007/s11104-012-1369-2
[34] Cakmak I. Enrichment of cereal grains with zinc:agronomic or genetic biofortification. Plant Soil, 2008, 302:1-17.
doi: 10.1007/s11104-007-9466-3
[35] Manzeke G M, Mtambanengwe F, Nezomba H, et al. Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crops Research, 2014, 166:128-136.
doi: 10.1016/j.fcr.2014.05.019
[36] Prasad R, Shivay Y S, Kumar D. Agronomic biofortification of cereal grains with iron and zinc. Advances in Agronomy, 2014, 125:55-91.
[37] Liu Z Q. Research advance on the mechanism of cadmium transport in rice. Meteorological and Environmental Research, 2014, 5(5):48-52.
[38] 杨菲, 唐明凤, 朱玉兴. 水稻对镉的吸收和转运的分子机理. 杂交水稻, 2015, 30(3):2-8.
[39] 凌启鸿, 张洪程, 丁艳锋, 等. 水稻高产技术的新发展——精确定量栽培. 中国稻米, 2005(1):3-7.
[40] Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from cont-aminated soils to prevent soil Cd risk-s. Biometals, 2004, 17(5):549-553.
pmid: 15688862
[41] Qiao J T, Liu T X, Wang X Q, et al. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils. Chemosphere, 2018, 195:260-271.
doi: 10.1016/j.chemosphere.2017.12.081
[42] Liu Y, Zhang C B, Zhao Y L, et al. Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soil. Science of the Total Environment, 2017, 579:1282-1288.
doi: 10.1016/j.scitotenv.2016.11.115
[43] 杨晓荣, 黄永春, 刘仲齐, 等. 叶面喷施2,3-二巯基丁二酸对水稻幼苗镉吸收转运及抗氧化系统的影响. 环境科学, 2020, 41(7):3441-3448.
[44] Liu C, Li F, Luo C, et al. Foliar appl-ication of two silica sols reduced cadmium accumulation in rice grains. Journal of Hazardous Materials, 2009, 161(2/3):1466-1472.
doi: 10.1016/j.jhazmat.2008.04.116
[45] Wang H, Xu C, Luo Z C, et al. Foliar application of Zn can reduce Cd concentrations in rice (Oryza sativa L.) under field conditions. Environmental Science and Pollution Research, 2018, 25:29287-29294.
doi: 10.1007/s11356-018-2938-6
[46] 张烁, 陆仲烟, 唐琦, 等. 水稻叶面调理剂的降Cd效果及其对营养元素转运的影响. 农业环境科学学报, 2018, 37(11):2507-2513.
[47] Shi X, Zhang C, Wang H, et al. Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil, 2005, 272(1/2):53-60.
doi: 10.1007/s11104-004-3920-2
[48] Cocker K M, Evans D E, Hodson M J. The amelioration of aluminum toxicity by silicon in wheat (Triticum aestivum L.):malate exudation as evidence for an in planta mechanism. Plant, 1998, 204(3):318-323.
[49] Nowakowski W, Nowakowska J. Silicon and copper interaction in the growth of spring wheat seedlings. Biologia Plantarum, 1997, 39(3):463-466.
doi: 10.1023/A:1001009100026
[50] Liang Y C, Wong J W C, Wei L. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 2005, 58(4):475-483.
doi: 10.1016/j.chemosphere.2004.09.034
[51] Drees L R, Wilding L P, Smeck N E, et al. Silica in soils:quartz and disordered silica polymorphs. Manhattan: John Wiley and Sons, Ltd, 2018.
[52] Lindsay W L. Chemical Equilibria in Soils. New York: John Wiley and Sons, 1979, 58:151-199.
[53] Savant N K, Snyder G H, Datnoff L E. Silicon management and sustainable rice production. Advances in Agronomy, 1996, 58(8):151-199.
[54] 张宇鹏, 谭笑潇, 陈晓远, 等. 无机硅叶面肥及土壤调理剂对水稻铅、镉吸收的影响. 生态环境学报, 2020, 29(2):388-393.
[55] 李晓. 水稻生长中后期叶面施肥技术. 农家致富, 2021(15):26.
[56] 李小明, 龙惊惊, 周悦, 等. 叶面肥的应用及研究进展. 安徽农业科学, 2017, 45(3):127-130.
[57] 姜虹. 纳米水铁矿合成及生物纳米复合叶面肥的应用. 南京:南京农业大学, 2016.
[58] 庄舜尧, 曹志洪. 叶面肥的研究与发展. 土壤, 1998(5):230-234.
[59] 吴嫦华. 一种有机硅叶面肥及其制备方法:中国, 200610010247.7. 2006-06-28.
[1] Zhang Chonghua, Duan Licheng, Wang Shangming, Zhang Qingxia, Wang Chengzi, Wu Fengyu, Yang Lin. Effects of Sowing Date on Late-Rice Yield and Utilization of Heat-Light Resources in Jiangxi Province [J]. Crops, 2022, 38(5): 229-234.
[2] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[3] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[4] Dong Linlin, Shen Mingxing, Shi Linlin, Shen Yuan, Wang Haihou, Lu Changying. The Effects of Biochar Combined with Earthworm Cast Application on Rice Yield and Nutrient Uptake [J]. Crops, 2022, 38(5): 69-77.
[5] Zhou Yujiao, Zhang Weiyang, Yang Jianchang. Research Advances on High Temperature Induced-Impairment in Spikelet-Opening and Pistil-Fertilization of Photo-Thermo-Sensitive Genic Male Sterile Rice Lines [J]. Crops, 2022, 38(4): 1-8.
[6] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[7] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[8] Zheng Siyi, Yang Ye, Song Yuanhui, Hua Qin, Lin Quanxiang, Zhang Haitao, Cheng Zhijun. Identification and Fine Mapping of Sugary Endosperm Mutant m5788 in Rice (Oryza sativa L.) [J]. Crops, 2022, 38(4): 14-21.
[9] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[10] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[11] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[12] Yang Chaozhen, Fang Haidong, Su Yan, Chen Xiaoyan, Liu Xiaoli, Yang Zhongyi. Study on Ecological and Geographic Distribution of Rice Planthopper Resistance Diversity of Rice Germplasms in Yunnan [J]. Crops, 2022, 38(3): 109-114.
[13] Ma Yihu, He Xianbiao, Qi Wen, Wang Xuhui, Chen Jian, Zhou Cui, Zhang Zhongxi. Effects of Application of Agricultural Waste Materials and Reduction of Chemical Fertilizer on Grain Yield and Quality of Double Cropping Late Rice and Soil Fertility [J]. Crops, 2022, 38(3): 115-124.
[14] Gao Jie, Li Siyu, Cheng Dayu, Zhang Xingyu, Gu Xi, Liu Lijun. Research Progress on the Effects of Slow/Controlled Release Fertilizers on Rice Yield and Quality [J]. Crops, 2022, 38(3): 20-26.
[15] Su Yuting, Yuan Shuai, Li Yongsong, Cui Can, Chen Pingping, Wang Xiaoyu, Yi Zhenxie. Effects of Nitrogen Fertilizer Management on Yield and Lodging Resistance Properties of Double-Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2022, 38(3): 225-232.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!