Crops ›› 2022, Vol. 38 ›› Issue (6): 226-233.doi: 10.16035/j.issn.1001-7283.2022.06.033

Previous Articles     Next Articles

Effects of Dense Planting with Reduced Nitrogen Application on Spikelet Formation of Different Types of Rice Varieties

Chong Haotian1(), Shang Cheng1, Zhang Yunbo1,2, Huang Liying1,2()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
  • Received:2021-08-02 Revised:2021-08-16 Online:2022-12-15 Published:2022-12-21
  • Contact: Huang Liying E-mail:201971380@yangtzeu.edu.cn;lyhuang8901@126.com

Abstract:

In order to clarify the effects of dense planting with reduced nitrogen application on spikelet formation (differentiation and degeneration) of different types of rice varieties and the relationship between spikelet formation and yield, a field experiment with three rice varieties (Yongyou 4949, the indica-japonica hybrid variety; Yangliangyou 6, the super hybrid indica variety; Huanghuazhan, the inbred indica variety), two N levels (90 and 180kg/ha) and two planting densities (30cm×15cm and 20cm×15cm) were conducted in a split-split plot arrangement. The main results showed that the number of secondary branches, differentiated spikelets and surviving spikelets per panicle were slightly decreased caused by reduced nitrogen rate, but the differences were not significant. However, dense planting significantly reduced the number of differentiated spikelets and surviving spikelets per panicle. The number of primary and secondary branches, dry matter accumulation at panicle initiation stage contributed more to the spikelet formation. The spikelet production efficiency for nitrogen, accumulated tempearature and accumulated radiation were effectively improved under dense planting with reduced nitrogen application. Compared with Yangliangyou 6 and Huanghuazhan, Yongyou 4949 had higher grain yield under dense planting with reduced nitrogen application, which was attributed to its higher dry matter accumulation, spikelet production efficiency and differentiated spikelets.

Key words: Rice, Nitrogen fertilizer, Planting density, Grain yield, Spikelet formation

Fig.1

Daily maximum and minimum temperature, and solar radiation during rice growing season from transplanting to maturity"

Table 1

Information about varieties used in the experiment"

品种Variety 种类Variety type 育成年份Year of release 母本Female parent 父本Male parent
甬优4949 Yongyou 4949 籼粳杂交稻 2016 甬粳49A F9249
扬两优6号Yangliangyou 6 籼型杂交稻 2005 广占63-4S 扬稻6号
黄华占Huanghuazhan 籼型常规稻 2005 黄新占 丰华占

Table 2

Yield and its components under different N level and planting density treatments"

品种
Variety
氮处理
Nitrogen
密度处理
Density
产量
Yield
(t/hm2)
有效穗数
Effective
panicle
每穗粒数
Spikelets
per panicle
总颖花
Spikelets
(×103)
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
甬优4949
Yongyou 4949
减氮 正常密度 7.75c 165.4b 270.9ab 44.5b 81.1a 21.2a
增密 9.13b 185.2ab 254.7b 46.9b 82.7a 21.3a
正常氮 正常密度 8.83b 173.4b 288.0a 49.8ab 81.5a 21.2a
增密 9.76a 213.0a 251.6b 53.3a 81.2a 21.1a
扬两优6号
Yangliangyou 6
减氮 正常密度 7.39d 174.1b 192.4a 33.4c 82.8a 26.5a
增密 9.03b 238.9a 164.4b 39.2ab 83.8a 26.6a
正常氮 正常密度 8.33c 184.5ab 209.7a 37.7b 79.0a 25.9b
增密 9.71a 224.0ab 196.0a 43.3a 80.1a 26.0b
黄华占Huanghuazhan 减氮 正常密度 6.68b 195.1b 203.7ab 39.4b 76.2a 19.5c
增密 7.36a 244.4ab 194.2b 47.0a 67.8b 20.1b
正常氮 正常密度 7.45a 212.3b 234.6a 49.9a 72.5ab 19.4c
增密 7.76a 268.5a 167.1b 44.8ab 69.2b 20.7a
氮肥处理Nitrogen treatment
减氮Reduced N rate 7.89B 200.5A 213.4A 41.7B 79.1A 22.6A
正常氮Normal N rate 8.64A 212.6A 224.5A 46.4A 77.3A 22.4B
密度处理Density treatment
正常密度Normal density 7.74B 184.1B 233.2A 42.3B 78.9A 22.3B
增密Increase density 8.79A 229.0A 204.7A 45.7A 77.5A 22.7A
品种Variety
甬优4949 Yongyou 4949 8.87A 184.2B 266.3A 48.6A 81.7A 21.2B
扬两优6号Yangliangyou 6 8.62A 205.4AB 190.6B 38.4B 81.4A 26.3A
黄华占Huanghuazhan 7.31B 230.1A 199.9B 45.3A 71.4B 19.9C
差异分析Analysis of variance
氮肥Nitrogen(N) ** ns ns ** ns *
密度Density(D) ** ** ns * ns **
品种Variety(V) ** ** ** ** ** **
氮肥×密度N×D ns ns ns ns ns ns
氮肥×品种N×V ns ns ns ns ns **
密度×品种D×V ** ns ns ns ns **
氮肥×密度×品种N×D×V ns ns ns * ns ns

Table 3

Spikelet differentiation and degeneration under different N levels and planting density treatments in different rice varieties"

品种
Variety
氮处理
Nitrogen
treatment
密度处理
Density
treatment
一次枝梗数
Primary
branch number
二次枝梗数
Secondary
branch number
颖花现存数
Number of surviving
spikelets
颖花退化数
Number of degenerated
spikelets
颖花分化数
Number of differentiated
spikelets
甬优4949
Yongyou 4949
减氮 正常密度 17.8a 55.9a 353.9a 19.1a 373.0a
增密 18.2a 50.9a 270.6c 25.9a 296.5b
正常氮 正常密度 18.7a 58.8a 334.6b 24.6a 359.2a
增密 16.7a 46.6a 274.2c 22.6a 296.8b
扬两优6号
Yangliangyou 6
减氮 正常密度 13.2a 44.7a 246.7a 10.2a 249.7a
增密 13.9a 45.3a 247.9a 9.8a 249.6a
正常氮 正常密度 14.0a 47.8a 257.3a 12.8a 264.6a
增密 13.2a 48.4a 247.2a 8.1a 249.5a
黄华占
Huanghuazhan
减氮 正常密度 13.4a 39.0a 217.6ab 13.8a 231.3ab
增密 12.8a 42.6a 201.0b 12.0a 213.0b
正常氮 正常密度 12.1a 45.7a 241.5a 8.3a 249.8a
增密 12.7a 42.8a 218.3ab 10.4a 228.8ab
氮肥处理Nitrogen treatment
减氮Reduced N rate 14.9A 46.4A 256.3A 15.1A 271.4A
正常氮Normal N rate 14.6A 48.3A 262.2A 14.5A 276.7A
密度处理Density treatment
正常密度Normal density 14.9A 48.6A 275.2A 14.8A 290.1A
增密Increase density 14.6A 46.1A 243.2B 14.8A 258.0B
品种Variety
甬优4949 Yongyou 4949 17.8A 53.0A 308.3A 23.0A 331.4A
扬两优6号Yangliangyou 6 46.6B 249.8B 10.2B 260.0B
黄华占Huanghuazhan 12.8B 42.5B 219.6C 11.1B 230.7C
差异分析Analysis of variance
氮肥Nitrogen(N) ns ns ns ns ns
密度Density(D) ns ns ** ns **
品种Varieties(V) ** ** ** ** **
氮肥×密度N×D ns ns ns ns
氮肥×品种N×V ns ns ns ns
密度×品种D×V ns ** ns **
氮肥×密度×品种N×D×V ns ns ns

Fig.2

The relationship between the number of surviving spikelets per panicle and the number of spikelets per panicle at maturity"

Fig.3

The relationships between the number of differentiated spikelets per panicle with the number of primary branches and secondary branches"

Fig.4

The relationship between dry matter weight at panicle initiation stage and the number of differentiated spikelets per panicle"

Table 4

Spikelet production efficiency based on total dry matter weight, effectively accumulated temperature, accumulated radiation from transplanting to maturity and total N uptake at maturity"

品种
Variety
氮处理
Nitrogen
密度处理
Density
干物质
Dry
matter
weight
(g/m2)
有效积温
Effective
accumulated
temperature
(℃)
积累辐射量
Accumulated
radiation
(MJ/m2)
全氮吸收
Total
Nitrogen
uptake
(g/m2)
颖花生产效率Production efficiency of spikelets
干物质
Dry
matter
(No./g)
积温
Effective
accumulated
temperature
[No./(m2·℃)]
辐射
Accumulated
radiation
(No./MJ)
氮素
Nitrogen
(×103)
[No./(mg?N)]
甬优4949
Yongyou 4949
减氮 正常密度 1386.2c 1644.4 1455.6 13.2b 32.1a 27.0c 30.5c 3.38a
增密 1535.8b 1644.4 1455.6 13.8b 30.5a 28.5bc 32.2bc 3.39a
正常氮 正常密度 1592.8b 1687.7 1492.7 17.4a 31.3a 29.5b 33.4b 2.86b
增密 1745.0a 1698.3 1496.7 17.9a 30.6a 31.4a 35.6a 2.97b
扬两优6号
Yangliangyou 6
减氮 正常密度 1407.2c 1908.3 1662.2 12.3c 23.7a 17.5c 20.1c 2.71a
增密 1655.7a 1908.3 1662.2 14.0b 23.7a 20.5b 23.6ab 2.81a
正常氮 正常密度 1545.5b 1917.5 1674.7 16.8a 24.4a 19.7b 22.5b 2.25b
增密 1707.7a 1925.7 1709.5 16.9a 25.4a 22.5a 25.3a 2.56a
黄华占
Huanghuazhan
减氮 正常密度 1243.0c 1775.8 1558.3 11.4c 31.7b 22.2c 25.3c 3.47ab
增密 1332.9b 1775.8 1558.3 12.9b 35.3a 26.5ab 30.2ab 3.71a
正常氮 正常密度 1378.3b 1782.9 1561.1 14.9a 36.3a 28.0a 31.9a 3.35b
增密 1475.0a 1782.9 1561.1 14.9a 30.4b 25.1b 28.7b 3.00c
氮肥处理Nitrogen
减氮Reduced N rate 1426.8B 1776.2 1558.7 12.9B 29.5A 23.7B 27.0B 3.25A
正常氮Normal N rate 1574.0A 1799.2 1582.6 16.5A 29.7A 26.0A 29.6A 2.83B
密度处理Density
正常密度Normal density 1425.5B 1786.1 1567.4 14.3A 29.9A 24.0B 27.3B 3.00A
增密Increase density 1575.4A 1789.2 1573.9 15.1A 29.30A 25.7A 29.3A 3.07A
品种Varieties
甬优4949 Yongyou 4949 1564.9A 1668.7 1475.1 15.6A 31.1B 29.1A 32.9A 3.15A
扬两优6号Yangliangyou 6 1579.0A 1914.9 1677.2 15.0A 24.3C 20.0C 22.9C 2.58B
黄华占Huanghuazhan 1357.3B 1779.3 1559.7 13.5B 33.4A 25.4B 29.0B 3.38A
差异分析Analysis of variance
氮肥Nitrogen(N) ** ** ns ** ** **
密度Density(D) ** ns ns * * ns
品种Varieties(V) ** * ** ** ** **
氮肥×密度N×D ns ns ns * * ns
氮肥×品种N×V ns ns ns ns ns ns
密度×品种D×V ns ns ns ns ns ns
氮肥×密度×品种N×D×V ns * * * *
[1] 松岛省三, 和田原七, 田中孝幸, 等. 水稻高产原理的探索与验证. 广西农业科学, 1964(5):45-49.
[2] Xue Y G, Duan H, Liu L J, et al. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop Science, 2013, 53(1):271-284.
doi: 10.2135/cropsci2012.06.0360
[3] 刘梦红, 杜春颖, 杨锡铜, 等. 土壤肥力和氮肥运筹对寒地水稻产量、品质及氮肥利用的影响. 河南农业科学, 2019, 48(2):25-34.
[4] 李超, 肖小平, 唐海明, 等. 减氮增密对机插双季稻生物学特性及周年产量的影响. 核农学报, 2019, 33(12):2451-2459.
doi: 10.11869/j.issn.100-8551.2019.12.2451
[5] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Production Science, 2009, 12(1):3-8.
doi: 10.1626/pps.12.3
[6] Peng S B, Khush G S, Virk P, et al. Progress in ideotype breeding to increase rice yield potential. Field Crops Research, 2008, 108:32-38.
doi: 10.1016/j.fcr.2008.04.001
[7] 张志才, 王云川. 江苏省籼稻品种更替过程中产量性状的变化特征. 中国稻米, 2006(3):16-18.
[8] Wei H H, Meng T Y, Li C, et al. Comparisons of grain yield and nutrient accumulation and translocation in high-yielding japonica/ indica hybrids,indica hybrids,and japonica conventional varieties. Field Crops Research, 2017, 204:101-109.
doi: 10.1016/j.fcr.2017.01.001
[9] 王之旭, 姜秀英, 韩勇. 辽宁省不同时期水稻主栽品种特征比较分析. 辽宁农业科学, 2015(3):20-22.
[10] 戚昌瀚. 水稻品种的源库关系与调节对策简论. 江西农业大学学报, 1993(1):1-5.
[11] 单玉华, 王海候, 龙银成, 等. 不同库容量类型水稻在氮素吸收利用上的差异. 扬州大学学报(农业与生命科学版), 2004, 25(1):41-45.
[12] 姚友礼, 王余龙. 水稻大穗形成机理的研究. 江苏农学院学报, 1995, 16(2):11-16.
[13] Yoshida H, Horie T, Shiraiwa T. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Research, 2006, 97(2):337-343.
doi: 10.1016/j.fcr.2005.11.004
[14] Yoshinaga S, Takai T, Arai-Sanoh Y, et al. Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativa L.) varieties in Japan. Field Crops Research, 2013, 150(15):74-82.
doi: 10.1016/j.fcr.2013.06.004
[15] 王亚梁, 张玉屏, 向镜, 等. 籼稻颖花分化与退化对不同播期温光的响应. 应用生态学报, 2017, 28(11):3571-3580.
doi: 10.13287/j.1001-9332.201711.010
[16] Ansari T H, Yamamoto Y, Yoshida T, et al. Cultivars differences in the number of differentiated spikelets and percentage of degenerated spikelets as determinants of the spikelet number per panicle in relation to dry matter production and nitrogen absorption. Soil Science and Plant Nutrition, 2003, 49(3):433-444.
doi: 10.1080/00380768.2003.10410029
[17] Huang L Y, Yang D S, Li X X, et al. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Research, 2019, 233:49-58.
doi: 10.1016/j.fcr.2019.01.005
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[3] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[4] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
[5] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[6] Jiang Shukun, Wang Lizhi, Yang Xianli, Zhang Xijuan, Liu Kai, Chi Liyong, Li Rui, Lai Yongcai. Spatiotemporal Change Characteristics of Rice Growth Climate Resources in Saline-Alkaline Area of Songnen Plain from 1961 to 2019 [J]. Crops, 2022, 38(6): 214-219.
[7] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[8] Zhao Bin, Ji Changhao, Sun Hao, Zhu Bin, Wang Rui, Chen Xiaodong. Comprehensive Assessment of the Yield and Quality of Forage and Grain among Multi-Rowed Barley Lines [J]. Crops, 2022, 38(6): 93-97.
[9] Shi Bixian, Tao Jianfei, Gao Yan, Xie Huihong, Abulimiti·Aierken , Cheng Pingshan, Maitituersun·Sadike , Sha Hong. Effects of Different Planting Densities on the Morphological Traits and Yields of Three Confectionery Sunflower Varieties [J]. Crops, 2022, 38(5): 195-200.
[10] Zhang Chonghua, Duan Licheng, Wang Shangming, Zhang Qingxia, Wang Chengzi, Wu Fengyu, Yang Lin. Effects of Sowing Date on Late-Rice Yield and Utilization of Heat-Light Resources in Jiangxi Province [J]. Crops, 2022, 38(5): 229-234.
[11] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[12] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[13] Dong Linlin, Shen Mingxing, Shi Linlin, Shen Yuan, Wang Haihou, Lu Changying. The Effects of Biochar Combined with Earthworm Cast Application on Rice Yield and Nutrient Uptake [J]. Crops, 2022, 38(5): 69-77.
[14] Zhou Yujiao, Zhang Weiyang, Yang Jianchang. Research Advances on High Temperature Induced-Impairment in Spikelet-Opening and Pistil-Fertilization of Photo-Thermo-Sensitive Genic Male Sterile Rice Lines [J]. Crops, 2022, 38(4): 1-8.
[15] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!