Crops ›› 2022, Vol. 38 ›› Issue (6): 159-166.doi: 10.16035/j.issn.1001-7283.2022.06.023

Previous Articles     Next Articles

Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients

Qin Meng1,2(), Cui Shize1, He Xiaodong3, Zhai Lingxia1,2, Tao Bo1, Wang Zhaojun1, Zhao Haicheng1, Li Hongyu1, Zheng Guiping1, Liu Lihua1()   

  1. 1Agricultural College, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, Heilongjiang, China
    3853 Farm, Shuangyashan City, Heilongjiang Province, Shuangyashan 155630, Heilongjiang, China
  • Received:2021-08-13 Revised:2021-09-07 Online:2022-12-15 Published:2022-12-21
  • Contact: Liu Lihua E-mail:1519815464@qq.com;11887352@qq.com

Abstract:

In order to improve the efficient utilization of straw resources in the process of rice cultivation, the puffing technology was combined with the straw returning to the field, and the rice variety Kenjing 8 was used as material to carry out a pot experiment. The effects of straw puffing and unpuffing two field returning forms at 25%, 50%, 75% and 100% on rice yield, quality and soil nutrients were discussed. The results showed that, compared with no returning straw (CK), the leaf area, dry matter accumulation and root traits of rice were suppressed at the tillering stage, but the puffing straw returning was less than the unpuffing straw returning. The leaf area index and dry matter accumulation of the puffing straw returning were higher than the other treatments at the full heading stage, and the leaf area index and dry matter accumulation at the filling stage showed the trend of puffing straw returning > unpuffing straw returning > CK. Both of the two returning treatments promoted the rice yield, and the increases of the number of panicles and seed-setting rate were the main reasons for the increase in yield. At the same time, the puffing straw returning increased the polished rice rate, Ca and Fe contents, and decreased the chalky grain rate, chalkiness and protein content, and it also increased rice taste. Both of the two returning treatments increased the organic matter, total nitrogen, alkali-hydrolyzable nitrogen and available potassium contents in the soil, and the best results were obtained with 100% and 75% of puffing straw returning and unpuffing straw returning, respectively. In generally, the puffing straw returning had less inhibition of rice growth at the early stage, and was beneficial to improving rice yield, taste quality and soil nutrient content at the later stage.

Key words: Rice, Puffing straw, Yield, Quality, Soil nutrient

Table 1

Methods and amounts of straw returning to the field for different treatments"

处理
Treatment
还田方式
Methods of straw returning
秸秆用量(g/盆)
Straw consumption (g/pot)
CK 秸秆不还田 0
P1 25%膨化还田 90 (1875kg/hm2)
P2 50%膨化还田 180 (3750kg/hm2)
P3 75%膨化还田 270 (5625kg/hm2)
P4 100%膨化还田 360 (7500kg/hm2)
S1 25%未膨化还田 90 (1875kg/hm2)
S2 50%未膨化还田 180 (3750kg/hm2)
S3 75%未膨化还田 270 (5625kg/hm2)
S4 100%未膨化还田 360 (7500kg/hm2)

Table 2

Comparison of rice leaf area index treated with different straws returning to field cm2/hole"

处理
Treatment
分蘖期Tillering stage 齐穗期Full heading stage 灌浆期Filling stage
TLAI HLAI TLAI HLAI TLAI
CK 2.64±0.28a 4.90±0.47bc 6.53±0.44ab 3.70±0.38b 4.76±0.51a
P1 1.47±0.10b 5.81±0.55a 7.10±0.56a 3.82±0.32b 4.87±0.53a
P2 1.16±0.12bc 5.50±0.39ab 6.85±0.48ab 3.77±0.38b 4.76±0.08a
P3 1.21±0.28bc 5.30±0.47abc 6.62±0.61ab 4.06±0.24ab 5.12±0.64a
P4 1.20±0.08bc 3.93±0.30d 5.21±0.40c 3.72±0.35b 4.53±0.38a
S1 1.39±0.15bc 5.64±0.56ab 6.72±0.63ab 4.39±0.39a 5.31±0.53a
S2 1.19±0.34bc 5.24±0.55abc 6.61±0.63ab 3.83±0.29b 4.81±0.57a
S3 1.12±0.18c 4.91±0.41bc 6.41±0.37ab 3.67±0.37b 4.77±0.34a
S4 1.07±0.17c 4.54±0.50cd 6.03±0.52b 3.74±0.36b 5.02±0.39a

Table 3

Comparison of dry matter accumulation of rice shoots treated with different straws returning to field g/hole"

处理
Treatment
分蘖期
Tillering
stage
齐穗期
Full heading
stage
灌浆期
Filling
stage
成熟期
Mature
stage
CK 6.73±0.04a 31.31±0.38b 43.81±0.84c 59.36±2.89a
P1 3.12±0.06d 33.78±0.83a 49.43±2.57ab 60.66±3.45a
P2 3.55±0.08b 31.32±0.85b 46.85±2.63abc 58.31±3.48a
P3 2.85±0.09e 29.66±0.98c 48.55±3.00ab 60.40±0.56a
P4 3.03±0.03d 25.37±0.67e 48.55±2.13ab 58.37±3.28a
S1 3.33±0.06c 30.00±0.71c 50.55±3.51a 59.09±2.14a
S2 3.58±0.15b 30.30±0.44bc 43.33±1.08c 58.61±3.92a
S3 2.64±0.06f 29.32±0.51c 44.65±1.16c 60.86±2.48a
S4 2.88±0.10e 26.75±0.86d 45.43±2.35bc 60.45±2.37a

Table 4

Comparison of root characteristics in rice tillering stage treated with different straws returned to field"

处理
Treatment
根总长度(cm/穴)
Total root length (cm/hole)
根平均直径
Average root diameter (mm)
根总表面积(cm2/穴)
Total root surface area (cm2/hole)
根总体积(cm3/穴)
Total root volume (cm3/hole)
CK 2670.54±209.34a 1.19±0.05a 1166.70±286.54a 91.98±6.88a
P1 2503.86±299.77ab 1.06±0.01bc 976.78±143.72abc 58.34±6.99b
P2 2327.04±249.35abc 1.04±0.07c 912.22±172.14abc 57.82±5.97b
P3 2260.54±234.05bc 1.03±0.08c 820.40±129.51bcd 43.81±3.60cd
P4 2013.35±196.82c 1.01±0.07c 771.87±104.16cd 39.15±2.25d
S1 2569.00±243.19ab 1.13±0.05ab 1063.11±102.10ab 64.56±6.29b
S2 2290.84±232.00abc 1.08±0.01bc 850.08±244.83bcd 49.12±5.24c
S3 2234.08±263.29bc 1.03±0.03c 882.65±108.90bcd 48.05±3.65c
S4 1522.99±212.02d 1.02±0.02c 626.03±138.42d 37.65±2.03d

Table 5

Comparison of rice yield and its components factors treated with different straws returning to field"

处理
Treatment
穗数
Number of panicles
穗粒数
Grains per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量(g/穴)
Yield (g/hole)
CK 12.33±0.58b 138.74±12.84a 90.75±3.52ab 22.12±0.81a 34.31±0.13a
P1 13.17±0.75ab 138.80±2.25a 94.10±2.07a 20.99±0.70ab 36.21±5.54a
P2 13.00±1.63b 134.03±13.09a 94.57±3.37a 21.01±0.63ab 34.50±5.03a
P3 12.83±0.75b 140.76±8.97a 93.18±2.93ab 21.15±0.56ab 35.48±1.18a
P4 12.67±0.52b 134.83±11.64a 93.22±0.99ab 22.10±0.87a 35.28±4.69a
S1 13.00±0.89b 138.60±12.81a 93.06±3.92ab 20.61±0.96ab 34.49±3.59a
S2 12.80±0.45b 138.86±5.64a 90.73±3.90ab 21.37±0.82ab 34.46±2.56a
S3 14.17±0.98a 130.88±13.52a 92.70±4.12ab 21.28±0.84b 36.59±4.89a
S4 13.00±0.00b 142.44±9.63a 89.42±2.52b 21.99±0.84a 36.37±2.27a

Table 6

Comparison of the main quality indexes of rice treated with different straws returning to the field"

处理
Treatment
糙米率
Brown rice
rate (%)
精米率
Polished rice
rate (%)
整精米率
Head rice
rate (%)
垩白粒率
Chalky grain
rate (%)
垩白度
Chalkiness
(%)
蛋白质含量
Protein
content (%)
直链淀粉含量
Amylose
content (%)
食味评分
Taste
score
CK 81.94±0.47b 72.78±0.18e 64.22±0.78b 5.17±0.45d 2.93±0.25d 7.70±0.10bc 15.83±0.25ab 75.52±1.03a
P1 82.28±0.15ab 73.78±0.31bc 64.78±0.50b 6.42±0.68cd 3.63±0.35cd 7.80±0.10b 15.97±0.15a 76.36±1.15a
P2 82.42±0.09ab 74.60±0.20a 65.31±0.36b 8.15±1.08b 4.70±0.56b 7.53±0.06de 15.90±0.26a 76.97±0.79a
P3 82.14±0.31ab 74.03±0.40b 64.72±0.61b 7.08±0.33bc 4.12±0.16bc 7.70±0.00bc 15.63±0.15ab 76.31±0.12a
P4 82.15±0.25ab 73.88±0.41bc 65.17±1.16b 3.70±0.30e 2.05±0.13e 7.47±0.06e 15.82±0.12ab 76.73±0.50a
S1 82.44±0.06a 73.65±0.17bc 65.24±0.33b 8.12±0.19b 4.82±0.12b 8.07±0.06a 15.40±0.20b 75.58±0.58a
S2 82.22±0.17ab 73.43±0.13cd 65.11±0.10b 9.85±1.13a 5.68±0.68a 7.73±0.12bc 16.00±0.17a 75.75±0.70a
S3 82.00±0.25ab 72.93±0.24de 65.29±0.40b 9.83±1.28a 6.13±0.88a 7.63±0.06cd 15.70±0.46ab 76.26±1.31a
S4 82.33±0.20ab 73.47±0.39cd 66.38±0.54a 6.42±0.72cd 3.82±0.46c 7.40±0.10e 15.87±0.15a 76.71±0.31a

Table 7

Comparison of the mineral element content of rice treated with different straws returned to the field"

处理
Treatment
Cu
(mg/kg)
Ca
(mg/kg)
Mg
(g/kg)
Fe
(mg/kg)
CK 0.97±0.13a 64.62±0.54de 0.99±0.01a 29.93±0.29e
P1 0.42±0.01h 65.58±0.63d 0.94±0.01b 35.15±0.45b
P2 0.54±0.01d 75.32±0.39bc 0.92±0.01c 33.78±0.24c
P3 0.56±0.00c 78.52±0.96a 0.81±0.01e 31.67±0.31d
P4 0.44±0.01g 76.27±1.36b 0.86±0.01d 32.08±0.17d
S1 0.82±0.00b 58.81±0.36g 0.98±0.01a 37.23±0.14a
S2 0.47±0.01e 63.37±0.87ef 0.95±0.01b 28.88±0.39f
S3 0.46±0.01f 62.68±0.67f 0.78±0.01f 28.40±0.20f
S4 0.41±0.00h 74.85±0.68c 0.77±0.01f 27.16±0.33g

Table 8

Comparison of soil nutrient content in different treatments of returning straw to the field"

处理
Treatment
有机质
Soil organic matter (g/kg)
全氮
Total N (mg/kg)
碱解氮
Alkali-hydrolyzable N (mg/kg)
有效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
CK 2.60±0.04d 1.27±0.01d 120.05±1.19f 30.95±0.38c 62.03±0.50h
P1 2.94±0.08a 1.35±0.03b 132.40±1.19d 35.57±0.34a 99.05±0.20d
P2 2.84±0.06abc 1.31±0.01c 136.17±0.59c 33.65±0.12b 94.08±0.68e
P3 2.92±0.02a 1.44±0.02a 145.78±1.57b 29.62±0.32d 122.22±1.27b
P4 2.86±0.04ab 1.43±0.03a 137.89±1.03c 29.98±0.29d 142.38±0.38a
S1 2.62±0.08d 1.30±0.04cd 130.68±2.06de 33.41±0.42b 81.90±0.95g
S2 2.76±0.08c 1.35±0.02b 127.94±2.59e 30.65±0.06c 88.10±1.53f
S3 2.84±0.04abc 1.42±0.01a 155.46±1.55a 27.54±0.32f 102.28±1.64c
S4 2.81±0.07bc 1.36±0.02b 130.00±2.14de 28.69±0.10e 94.90±0.61e
[1] 王文玉, 万思宇, 张雪松, 等. 不同耕作模式下插秧期与秧苗类型对水稻产量品质的影响. 华北农学报, 2021, 36(2):116-126.
doi: 10.7668/hbnxb.20191622
[2] 张伟明, 陈温福, 孟军, 等. 东北地区秸秆生物炭利用潜力、产业模式及发展战略研究. 中国农业科学, 2019, 52(14):2406-2424.
[3] 田平, 姜英, 孙悦, 等. 不同还田方式对玉米秸秆腐解及土壤养分含量的影响. 中国生态农业学报(中英文), 2019, 27(1):100-108.
[4] 李银水, 余常兵, 戴志刚, 等. 稻秆还田方式对油菜产量及养分效率的影响. 华北农学报, 2021, 36(1):177-186.
doi: 10.7668/hbnxb.20191303
[5] 韩继明, 潘根兴, 刘志伟, 等. 减氮条件下秸秆炭化与直接还田对旱地作物产量及综合温室效应的影响. 南京农业大学学报, 2016, 39(6):986-995.
[6] 王月宁. 稻秆还田量与还田方式下土壤培肥效应及其对滴灌玉米生长的影响. 银川: 宁夏大学, 2019.
[7] 周东兴, 王广栋, 邬欣慧, 等. 不同还田量对秸秆养分释放规律及微生物功能多样性的影响. 土壤通报, 2018, 49(4):848-855.
[8] 武际, 郭熙盛, 鲁剑巍, 等. 连续秸秆覆盖对土壤无机氮供应特征和作物产量的影响. 中国农业科学, 2012, 45(9):1741-1749.
[9] Suriyagoda L, De Costa W A J M, Lambers H. Growth and phosphorus nutrition of rice when inorganic fertiliser application is partly replaced by straw under varying moisture availability in sandy and clay soils. Plant and Soil, 2014, 384(1/2):53-68.
doi: 10.1007/s11104-014-2049-1
[10] 朱萍, 顾艾节, 王华, 等. 稻麦秸秆连续还田配施腐熟剂对土壤性状和水稻产量的影响. 上海农业学报, 2018, 34(2):60-64.
[11] 薛亚光, 魏亚凤, 李波, 等. 麦秸还田和耕作方式对水稻产量和品质的影响. 中国农学通报, 2018, 34(22):10-14.
[12] 陈新红, 叶玉秀, 许仁良, 等. 小麦秸秆还田量对水稻产量和品质的影响. 作物杂志, 2009(1):54-57.
[13] 刘阳. 不同生态条件下稻米品质对施氮反应的差异. 扬州: 扬州大学, 2006.
[14] Yan F, Sun Y, Xu H, et al. Effects of wheat straw mulch application and nitrogen management on rice root growth,dry matter accumulation and rice quality in soils of different fertility. Paddy and Water Environment, 2018, 16(3):507-518.
doi: 10.1007/s10333-018-0643-1
[15] 徐忠山, 刘景辉, 逯晓萍, 等. 秸秆颗粒还田对黑土土壤酶活性及细菌群落的影响. 生态学报, 2019, 39(12):4347-4355.
[16] 张慧玲, 王志伟, 周中凯. 不同汽爆处理对藜麦秸秆化学组成及纤维结构的影响. 中国农业科技导报, 2018, 20(7):105-112.
doi: 10.13304/j.nykjdb.2017.0428
[17] 任天宝, 徐桂转, 马孝琴, 等. 蒸汽爆破对玉米秸秆理化特性的影响. 高压物理学报, 2012, 26(2):227-234.
[18] 鲍士旦. 土壤农业化学分析. 北京: 中国农业出版社, 2000.
[19] 李思平, 丁效东, 曾路生, 等. 秸秆还田与化肥减施对水稻生长指标及光合参数的影响. 水土保持学报, 2020, 34(2):208-215.
[20] 赵长坤, 王学春, 吴凡, 等. 油菜秸秆还田对水稻根系分布及稻谷产量的影响. 应用与环境生物学报, 2021, 27(1):96-104.
[21] 解文孝, 李建国, 刘军, 等. 不同土壤背景下秸秆还田量对水稻产量构成及氮吸收利用的影响. 中国土壤与肥料, 2021(2):248-255.
[22] 赵亚慧, 王宁, 查显宝, 等. 麦秸还田下翻耕和不同水肥管理措施对稻田理化性质及水稻产量的影响. 农业资源与环境学报, 2020, 37(2):195-201.
[23] 何艳, 严田蓉, 郭长春, 等. 秸秆还田与栽插方式对水稻根系生长及产量的影响. 农业工程学报, 2019, 35(7):105-114.
[24] 何艳, 严田蓉, 唐源, 等. 栽插和秸秆还田方式对水稻氮素吸收利用和产量的影响. 植物营养与肥料学报, 2020, 26(1):86-95.
[25] 冯珺珩, 黄金凤, 刘天奇, 等. 耕作与秸秆还田方式对稻田N2O排放、水稻氮吸收及产量的影响. 作物学报, 2019, 45(8):1250-1259.
doi: 10.3724/SP.J.1006.2019.82051
[26] 陈浩, 张秀英, 吴玉红, 等. 秸秆还田与氮肥管理对稻田杂草群落和水稻产量的影响. 农业资源与环境学报, 2018, 35(6):500-507.
[27] 崔月峰, 卢铁钢, 孙国才, 等. 秸秆不同还田方式对北方粳稻物质生产和产量的影响. 福建农业学报, 2019, 34(6):630-637.
[28] 张巳奇, 朱晶, 冉成, 等. 秸秆还田对苏打盐碱地水稻氮肥利用及产量的影响. 吉林农业大学学报, 2020, 42(3):254-260.
[29] 金鑫, 蔡林运, 李刚华, 等. 小麦秸秆全量还田对水稻生长及稻田氧化还原物质的影响. 中国土壤与肥料, 2013(5):80-85.
[30] 常勇, 黄忠勤, 周兴根, 等. 不同麦秸还田量对水稻生长发育、产量及品质的影响. 江苏农业科学, 2018, 46(20):47-51.
[31] 袁玲, 张宣, 杨静, 等. 不同栽培方式和秸秆还田对水稻产量和营养品质的影响. 作物学报, 2013, 39(2):350-359.
[32] 马立晓, 李婧, 邹智超, 等. 免耕和秸秆还田对我国土壤碳循环酶活性影响的荟萃分析. 中国农业科学, 2021, 54(9):1913-1925.
[33] 朱晶, 张巳奇, 冉成, 等. 秸秆还田对松嫩平原西部苏打盐碱地稻田土壤养分及产量的影响. 东北农业科学, 2021, 46(1):42-46,51.
[34] 韩新忠, 朱利群, 杨敏芳, 等. 不同小麦秸秆还田量对水稻生长、土壤微生物生物量及酶活性的影响. 农业环境科学学报, 2012, 31(11):2192-2199.
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Wen Rui, Chen Qianwu, Zhao Yajie, Jia Yiming, Lu Xudong, Zhang Jihong, Li Huanchun, Zhao Peiyi, Zhang Yonghu. Study on Water Temperature Effects and Water Use Efficiency of Paddy Field under Different Plastic Film Mulching Planting Patterns in Arid Area of Loess Plateau in Northwest China [J]. Crops, 2022, 38(6): 111-117.
[3] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[4] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[5] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[6] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[7] Guo Juxian, Huang Jiaxin, Li Guihua, Fu Mei, Luo Wenlong, Wang Jun, Lu Meilian. Volatiles Metabolites Analysis and Evaluation on Quality Traits of Different Tora Varieties [J]. Crops, 2022, 38(6): 167-173.
[8] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[9] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[10] Hui Chao, Yang Weijun, Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing. Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area [J]. Crops, 2022, 38(6): 201-207.
[11] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[12] Jiang Shukun, Wang Lizhi, Yang Xianli, Zhang Xijuan, Liu Kai, Chi Liyong, Li Rui, Lai Yongcai. Spatiotemporal Change Characteristics of Rice Growth Climate Resources in Saline-Alkaline Area of Songnen Plain from 1961 to 2019 [J]. Crops, 2022, 38(6): 214-219.
[13] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[14] Chong Haotian, Shang Cheng, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Application on Spikelet Formation of Different Types of Rice Varieties [J]. Crops, 2022, 38(6): 226-233.
[15] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!