Crops ›› 2022, Vol. 38 ›› Issue (6): 234-240.doi: 10.16035/j.issn.1001-7283.2022.06.034

Previous Articles     Next Articles

Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress

Zhang Ruidong(), Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong()   

  1. Institute of Industrial Crops, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
  • Received:2022-04-19 Revised:2022-05-05 Online:2022-12-15 Published:2022-12-21
  • Contact: Cao Xiong E-mail:342185880@qq.com;cxxp1969@163.com

Abstract:

Drought stress during germination period is an obstacle limiting sorghum production. Seed priming is an efficient and easy method to regulate plant tolerance against different abiotic stresses. A germination experiment was conducted to examine the different agent priming on germination and physiological parameters of sorghum under normal and drought stress conditions. We quantified the effects of priming with polyethylene glycol (PEG), potassium chloride (KCl), calcium chloride (CaCl2), salicylic acid (SA) and no priming (NP) under normal and drought stress conditions. The results showed that drought stress significantly reduced the germination rate and inhibited the growth of germ and radicle. The germination rates of Jinza 22 with priming by PEG, KCl, CaCl2 and SA were increased by 18.18%, 12.72%, 35.45% and 31.82% compared with NP treatment, respectively. The germination rate of Jinzao 5564 were increased by 20.18%, 10.76%, 26.91% and 30.04% compared with NP treatment, respectively. Under drought stress, priming treatment promoted shoot and root elongation. After CaCl2 and SA treatment, the shoot length of Jinza 22 increased by 267.07% and 271.95%, respectively, and the root length were increased by 231.94% and 355.56%, respectively. The shoot length and root length of Jinzao 5564 increased by 195.96% and 206.60%, respectively, compared with NP after CaCl2 treatment. Seed priming increased the activities of antioxidant enzymes and alleviated the damage of membrane lipid peroxidation to the germ. At the same time, seed priming promoted the metabolism of sugar and increased the content of proline to alleviate the inhibitory effect of drought stress.

Key words: Sorghum, Germination period, Drought stress, Seed priming, Physiological characteristics

Fig.1

Effects of different priming treatments on the germination rate of sorghum under normal and drought stress conditions (a) and (b) are normal conditions, (c) and (d) are drought stress"

Table 1

The effects of different priming treatments on the germination morphological indicators of sorghum seedlings"

品种
Variety
生长环境
Growth condition
处理
Treatment
芽长
Shoot length(cm)
根长
Root length (cm)
芽鲜重
Shoot fresh weight (mg)
根鲜重
Root fresh weight (mg)
晋杂22
Jinza 22
正常 NP 5.30±0.98b 2.68±0.61d 42.16±4.80c 8.78±4.04c
PEG 7.66±0.40a 8.94±1.03ab 65.16±3.99b 13.66±1.33bc
KCl 7.36±0.92a 7.72±1.17b 74.24±10.29a 23.01±3.35ab
CaC12 8.04±0.27a 5.98±0.47c 76.02±4.78ab 22.29±4.48ab
SA 7.54±0.54a 10.10±1.27a 68.00±5.84ab 22.60±4.89a
干旱 NP 1.64±0.24d 1.44±0.30b 14.38±1.27c 7.08±0.29c
PEG 5.22±0.89b 4.96±0.74a 39.72±1.93a 22.80±1.18b
KC1 4.32±0.44c 2.76±0.24b 31.86±1.48b 23.96±1.97ab
CaC12 6.02±0.37a 4.78±0.79a 37.28±2.38a 27.82±4.25a
SA 6.10±0.44a 6.56±2.15a 41.54±3.33a 25.32±2.08ab
晋早5564
Jinzao 5564
正常 NP 4.76±0.46b 5.64±1.16c 50.14±5.32c 14.61±0.92b
PEG 6.52±0.71a 9.90±1.97ab 70.66±3.49ab 25.07±6.40a
KC1 7.32±0.43a 10.76±1.95ab 71.62±8.67ab 26.46±4.22a
CaC12 7.22±0.56a 8.16±1.02bc 73.23±5.20a 28.00±3.83a
SA 6.68±0.76a 12.04±2.90a 61.04±2.75bc 24.18±2.91a
干旱 NP 1.98±0.38d 2.12±0.45b 16.47±1.78c 10.96±2.42b
PEG 3.20±0.62c 3.98±1.52b 25.28±3.35b 17.66±2.21a
KC1 4.78±1.31b 7.00±1.74a 34.58±3.85ab 20.17±1.86a
CaC12 5.86±0.60a 6.50±0.66a 42.88±3.39a 22.75±4.03a
SA 4.10±0.49bc 7.16±1.68a 38.56±4.12a 21.28±1.80a

Fig.2

The effects of different priming treatments on H2O2 and MDA contents in sorghum shoots Lowercase letters indicate significant difference at 0.05 level, the same below"

Fig.3

The effects of different priming treatments on antioxidant enzyme activities in sorghum"

Fig.4

The effects of different priming treatments on the soluble sugar and proline contents of sorghum"

[1] Ahluwalia O, Singh P C, Bhatia R. A review on drought stress in plants:implications,mitigation and the role of plant growth promoting rhizobacteria. Resources,Environment and Sustainability, 2021, 5:100032.
doi: 10.1016/j.resenv.2021.100032
[2] 张晗, 王建成, 王东建, 等. 中国高粱地方品种遗传多样性评价及中、外高粱遗传变异水平比较. 作物学报, 2011, 37(2):224-234.
[3] Arouna N, Gabriele M, Pucci L. The impact of germination on sorghum nutraceutical properties. Foods, 2020, 9:1218.
doi: 10.3390/foods9091218
[4] Khoddami A, Messina V, Vadabalija Venkata K, et al. Sorghum in foods:functionality and potential in innovative products. Critical Reviews in Food Science and Nutrition, 2021:1-17.
[5] Chadalavada K, Kumari B D R, Kumar T S. Sorghum mitigates climate variability and change on crop yield and quality. Planta, 2021, 253:113.
doi: 10.1007/s00425-021-03631-2 pmid: 33928417
[6] 李文娆, 张岁岐, 山仑. 水分胁迫下紫花苜蓿和高粱种子萌发特性及幼苗耐旱性. 生态学报, 2009, 29(6):3066-3074.
[7] 吴奇, 周宇飞, 高悦, 等. 不同高粱品种萌发期抗旱性筛选与鉴定. 作物学报, 2016, 42(8):1233-1246.
[8] Heydecker W. Germination of an idea:the priming of seeds. University of Nottingham School of Agriculture Report, 1974:50-67.
[9] Wang W, Peng S, Chen Q, et al. Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress. AoB Plants, 2016, 8:plw074.
doi: 10.1093/aobpla/plw074
[10] Marthandan V, Geetha R, Kumutha K, et al. Seed priming:a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 2020, 21:8258.
doi: 10.3390/ijms21218258
[11] Patane C, Saita A, Tubeileh A, et al. Modeling seed germination of unprimed and primed seeds of sweet sorghum under PEG-induced water stress through the hydrotime analysis. Acta Physiologiae Plantarum, 2016, 38:115.
doi: 10.1007/s11738-016-2135-5
[12] Bismillah K M, Hussain M, Raza A, et al. Seed priming with CaCl2 and ridge planting for improved drought resistance in maize. Turkish Journal of Agriculture and Forestry, 2015, 39(2):193-203.
doi: 10.3906/tar-1405-39
[13] Jisha K C, Vijayakumari K, Puthur J T. Seed priming for abiotic stress tolerance:an overview. Acta Physiologiae Plantarum, 2013, 35(5):1381-1396.
doi: 10.1007/s11738-012-1186-5
[14] 郝西, 崔亚男, 张俊, 等. 过氧化氢浸种对花生种子发芽及生理代谢的影响. 作物学报, 2021, 47(9):1834-1840.
doi: 10.3724/SP.J.1006.2021.04187
[15] Chen X F, Zhang R D, Xing Y F, et al. The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PLoS ONE, 2021, 16(1):e0245505.
[16] Gong H, Zhu X, Chen K, et al. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science, 2005, 169(2):313-321.
doi: 10.1016/j.plantsci.2005.02.023
[17] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[18] 张宪政. 作物生理研究法. 北京: 农业出版社, 1992.
[19] Zhang R D, Zhou Y F, Yue Z X, et al. Changes in photosynthesis,chloroplast ultrastructure,and antioxidant metabolism in leaves of sorghum under waterlogging stress. Photosynthetica, 2019, 57(4):1076-1083.
doi: 10.32615/ps.2019.124
[20] Nezhadahmadi A, Prodhan Z H, Faruq G. Drought tolerance in wheat. The Scientific World Journal, 2013:610721.
[21] Rhaman M S, Imran S, Rauf F, et al. Seed priming with phytohormones:an effective approach for the mitigation of abiotic stress. Plants-Basel, 2021, 10(1):37.
[22] del Río L A. ROS and RNS in plant physiology:an overview. Journal of Experimental Botany, 2015, 66(10):2827-2837.
doi: 10.1093/jxb/erv099
[23] Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development, 2018, 145(15):dev164376.
[24] Bai Y, Xiao S, Zhang Z, et al. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ, 2020, 8:e9450.
doi: 10.7717/peerj.9450
[25] Li C, Tan D X, Liang D, et al. Melatonin mediates the regulation of ABA metabolism,free-radical scavenging,and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 2015, 66(3):669-680.
doi: 10.1093/jxb/eru476
[26] Sohag A, Tahjib-Ul-Arif M, Brestic M, et al. Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant,Soil and Environment, 2020, 66(1):7-13.
doi: 10.17221/472/2019-PSE
[27] Kanto U, Jutamanee K, Osotsapar Y, et al. Promotive effect of priming with 5-aminolevulinic acid on seed germination capacity,seedling growth and antioxidant enzyme activity in rice subjected to accelerated ageing treatment. Plant Production Science, 2015, 18(4):443-454.
doi: 10.1626/pps.18.443
[28] Farhoudi R, Saeedipour S, MohamMadreza D. The effect of NaCl seed priming on salt tolerance,antioxidant enzyme activity,proline and carbohydrate accumulation of muskmelon (Cucumis melo L.) under saline condition. African Journal of Agricultural Research, 2011, 6(6):1363-1370.
[29] Rosa M, Prado C, Podazza G, et al. Soluble sugars--metabolism,sensing and abiotic stress:a complex network in the life of plants. Plant Signal Behavior, 2009, 4(5):388-393.
doi: 10.4161/psb.4.5.8294
[30] Khan M N, Li Y, Khan Z, et al. Nanoceria seed priming enhanced salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities. Journal of Nanobiotechnology, 2021, 19:276.
doi: 10.1186/s12951-021-01026-9 pmid: 34530815
[31] Baier M, Bittner A, Prescher A, et al. Preparing plants for improved cold tolerance by priming. Plant Cell and Environment, 2018, 42:782-800.
doi: 10.1111/pce.13394
[1] Yin Xilong, Shi Yang, Li Wangsheng, Xing Wang. Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage [J]. Crops, 2022, 38(6): 152-158.
[2] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[3] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[4] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
[5] Wang Yubin, Niu Hao, Lü Xin, Chu Jianqiang, Wang Rui, Fan Fangfang, Ju Lan, Li Huiming, Ping Jun’ai. Influence of Barren Stress on Main Agronomic Traits and Evaluation of Barren-Tolerance in Sorghum Varieties [J]. Crops, 2022, 38(5): 78-86.
[6] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[7] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[8] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[9] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[10] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[11] Duan Yajuan, Cao Shiliang, Yu Tao, Li Wenyue, Yang Gengbin, Wang Chengbo, Liu Baomin, Liu Changhua. Identification of Salt Tolerance during Germination of Maize Inbred Lines [J]. Crops, 2022, 38(1): 213-219.
[12] Liang Haiyan, Li Hai, Ding Chao, Yang Fang, Song Xiaoqiang, Deng Yarui, Liu Guishan, Lin Fengxian, Zhang Xiangyu, Su Zhanming, Jiang Chao. Effects of Potassium Fertilizer on Morphology, Mechanical Properties, Physiological Characteristics and Lodging Resistance of Broom Corn Millet [J]. Crops, 2021, 37(6): 177-181.
[13] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[14] Chen Fang, Gu Xiaoping, Yu Fei, Hu Jiamin, Zuo Jin, Hu Xinxin, Liu Yupeng, Hu Feng. Response of Photosynthetic Physiological Characteristics of Pepper in Guizhou under Drought Stress [J]. Crops, 2021, 37(5): 160-165.
[15] Lü Wei, Ren Guoxiang, Han Junmei, Wen Fei, Wang Ruopeng, Liu Wenping. Effects of Drought Stress on Physiological and Biochemical Indexes of Sesame Seedlings [J]. Crops, 2021, 37(5): 172-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!