Crops ›› 2022, Vol. 38 ›› Issue (6): 75-81.doi: 10.16035/j.issn.1001-7283.2022.06.010

Previous Articles     Next Articles

Breeding and Heterosis Analysis of Two Line Parents of Foxtail Millet Hybrids with Similar Growth Process

Li Zhihua(), Mu Tingting(), Li Aijun   

  1. Sorghum Research Institute of Shanxi Agricultural University, Jinzhong 030600, Shanxi, China
  • Received:2021-06-09 Revised:2021-10-09 Online:2022-12-15 Published:2022-12-21
  • Contact: Mu Tingting E-mail:lihubo0@163.com;ting_ting2006@163.com

Abstract:

When using “two lines” to make hybrids with foxtail millet heterosis, the heading and flowering stages of sterile lines are often earlier than those of restorer lines, and they can meet and cross at flowering stage only in different sowing periods. In this study, the heading and flowering periods of existing sterile lines and herbicide-resistant restorers were improved, three high-quality male sterile lines (Y1A, Y2A and Y3A) and five herbicide resistant Napujing restorers (K17-1, K18-49, K18-54, K18-62 and K18-70) were selected and bred in line with the improved breeding goal of “two lines” of millet. The 15 combinations were made by NCII incomplete diallel crossing with three sterile lines and five restorer lines. Combining ability, transgressive heterosis and superstandard heterosis of parents and cross combinations were analyzed, and their heterosis were predicted. It was concluded that the combining ability of parents were different and had different utilization value in the selection of excellent agronomic characteristics. There were differences in transgressive heterosis and superstandard heterosis among hybrid combinations, but the heterosis was unrelated and irregular. It was predicted that parents have heterosis. The parents of the “two lines” performed well in their respective characteristics, the hybrid combination Y3A×K18-49 had strong heterosis and heterosis breeding could be continued in the coming year. The results provide available parents and good hybrids for simultaneous sowing and hybridization of foxtail millet “two lines” and simplify the process of foxtail millet hybrid seed production.

Key words: Foxtail millet, Sterile lines, Herbicide-resistant restorer line, Combining ability, Heterosis

Table 1

Main characteristics of three newly selected sterile lines"

不育系
Sterile line
播种期(月-日)
Seeding stage
(month-date)
抽穗期(月-日)
Heading stage
(month-date)
苗色
Seedling
color
株高
Plant height
(cm)
穗长
Ear length
(cm)
穗粗
Ear diameter
(cm)
千粒重
1000- Grain
1001- weight (g)
Y1A 05-20 08-03 绿 118.84 26.40 3.76 3.34
Y2A 05-20 08-01 绿 120.42 26.90 3.54 3.09
Y3A 05-20 08-01 绿 108.44 21.84 3.66 3.07

Table 2

Main agronomic characteristics of five newly selected herbicide-resistant sethoxydim restorers"

恢复系
Restorer
株高
Plant height (cm)
穗长
Ear length (cm)
穗粗
Ear diameter (cm)
穗重
Ear weight (g)
穗粒重
Spike grain weight (g)
千粒重
1000-grain weight (g)
K17-1 161.77 23.25 3.40 30.09 23.21 3.18
K18-49 159.11 28.13 2.24 31.61 23.59 3.22
K18-54 159.26 27.56 2.56 29.07 21.93 3.37
K18-62 154.01 26.94 1.73 32.63 26.31 2.95
K18-70 155.63 29.79 1.96 29.34 22.55 2.94

Table 3

Variance analysis of combining ability of main agronomic characteristics"

变异来源
Source of variation
株高
Plant height
穗长
Ear length
穗粗
Ear diameter
穗重
Ear weight
穗粒重
Spike grain weight
千粒重
1000-grain weight
区组Block 0.17 0.52 0.47 0.28 0.49 0.03
组合Combination 88.77** 73.20** 1.80** 6.35** 95.34** 123.20**
P1 18.00** 12.23** 7.36** 2.53** 1.29** 4.01**
P2 55.38** 1.10** 3.63** 0.58** 4.05** 1.17**
P1×P2 6.52** 17.34** 0.56** 4.61** 62.73** 65.36**

Table 4

General combining ability effect values"

不育系(恢复系)
Sterile line (restorer)
株高
Plant height
穗长
Ear length
穗粗
Ear diameter
穗重
Ear weight
穗粒重
Spike grain weight
千粒重
1000-grain weight
Y1A 4.83 -1.35 5.71 -1.62 -8.50 2.62
Y2A -1.84 -0.60 -3.55 4.07 13.21 -2.64
Y3A -2.99 1.96 -2.16 -2.45 -4.71 0.03
K17-1 -3.20 -6.66 12.90 -3.00 3.74 0.52
K18-49 0.95 12.77 -1.69 3.23 2.95 0.22
K18-54 4.73 -3.23 -5.12 -7.64 -10.68 -5.98
K18-62 -0.27 -2.34 4.80 15.18 10.42 -4.72
K18-70 -2.22 -0.55 -10.89 -7.78 -6.43 9.96

Table 5

Effect value of special combining ability"

组合
Combination
株高
Plant height
穗长
Ear length
穗粗
Ear diameter
穗重
Ear weight
穗粒重
Spike grain weight
千粒重
1000-grain weight
Y1A×K17-1 1.09 -3.47 -2.10 9.94 9.57 -5.18
Y1A×K18-49 1.01 3.87 0.27 -6.02 -14.53 0.58
Y1A×K18-54 -0.86 2.32 6.04 -5.86 -1.94 0.21
Y1A×K18-62 -0.73 -3.57 -1.45 2.59 1.88 -2.06
Y1A×K18-70 -0.51 0.84 -2.75 -0.64 5.02 6.45
Y2A×K17-1 0.38 1.73 2.25 6.61 1.44 3.31
Y2A×K18-49 -0.13 -0.98 -5.72 -8.40 0.33 2.72
Y2A×K18-54 0.73 2.05 -7.06 6.34 -13.51 0.90
Y2A×K18-62 -1.22 0.27 7.66 0.26 7.40 3.20
Y2A×K18-70 0.24 -3.07 2.87 -4.81 4.33 -10.13
Y3A×K17-1 -1.47 1.73 -0.14 -16.55 -11.01 1.86
Y3A×K18-49 -0.89 -2.89 5.45 14.42 14.19 -3.30
Y3A×K18-54 0.13 -4.37 1.02 -0.47 15.45 -1.11
Y3A×K18-62 1.96 3.30 -6.21 -2.85 -9.29 -1.14
Y3A×K18-70 0.27 2.23 -0.12 5.45 -9.35 3.69

Table 6

Variance of population combining ability %"

配合力
Combining ability
株高
Plant height
穗长
Ear length
穗粗
Ear diameter
穗重
Ear weight
穗粒重
Spike grain weight
千粒重
1000-grain weight
一般配合力GCA 95.13 79.97 100 39.47 41.85 51.32
特殊配合力SCA 4.87 20.03 0 60.53 58.15 48.68

Table 7

Average value, transgressive heterosis and superstandard heterosis of each combination"

组合
Combination
株高
Plant height
穗长
Ear length
穗粗
Ear diameter
穗重
Ear weight
穗粒重
Spike grain weight
千粒重
1000-grain weight
平均
Mean
(cm)
TH
(%)
SH
(%)
平均
Mean
(cm)
TH
(%)
SH
(%)
平均
Mean
(cm)
TH
(%)
SH
(%)
平均
Mean
(g)
TH
(%)
SH
(%)
平均
Mean
(g)
TH
(%)
SH
(%)
平均
Mean
(g)
TH
(%)
SH
(%)
Y1A×K17-1 148.18 -8.40 -3.59 24.27 4.37 -8.15 2.89 -14.95 15.21 35.11 16.68 13.51 26.57 14.49 5.20 2.93 -7.86 -2.98
Y1A×K18-49 154.58 -2.84 0.57 33.92 20.57 28.37 2.59 15.55 3.12 31.87 0.81 3.02 20.26 -14.10 -22.78 3.09 -3.93 2.43
Y1A×K18-54 156.17 -1.94 1.60 26.86 -2.55 1.66 2.65 3.39 5.44 28.30 -2.65 -8.51 20.00 -8.79 -23.77 2.90 -14.05 -4.08
Y1A×K18-62 149.82 -2.72 -2.53 25.94 -3.71 -1.81 2.71 56.45 7.84 38.72 18.67 25.20 26.32 0.04 0.30 2.87 -2.82 -5.08
Y1A×K18-70 147.85 -5.00 -3.81 28.04 -5.87 6.14 2.29 16.58 -8.96 30.00 2.23 -3.02 22.84 1.29 -12.95 3.56 21.09 17.88
Y2A×K17-1 137.12 -15.24 -10.79 25.70 10.54 -2.73 2.77 -18.53 10.36 35.90 19.31 16.07 30.02 29.34 14.41 3.03 -4.82 0.22
Y2A×K18-49 143.18 -10.01 -6.84 31.98 13.67 21.03 2.21 -1.34 -11.95 32.98 4.32 6.61 29.54 25.24 12.59 3.00 -6.83 -0.66
Y2A×K18-54 148.00 -8.18 -3.71 27.71 -1.45 4.88 2.09 56.26 -16.67 34.27 17.87 10.78 22.57 2.93 -13.98 2.76 -2.82 -8.61
Y2A×K18-62 141.42 -7.07 -7.99 26.55 0.54 0.49 2.70 -18.29 7.70 39.85 22.12 28.83 33.23 5.33 26.62 2.87 -18.10 -5.08
Y2A×K18-70 138.50 -11.01 -9.89 26.83 -9.93 1.56 2.20 11.99 -12.55 30.50 3.95 -1.40 28.18 24.94 7.37 2.91 -1.13 -3.75
Y3A×K17-1 131.37 -18.79 -14.53 26.76 15.09 1.28 2.75 -19.26 9.36 26.01 -13.58 -15.92 22.32 -3.83 -14.94 3.06 -3.67 1.43
Y3A×K18-49 141.88 -10.83 -7.69 31.12 10.62 17.78 2.52 12.57 0.46 38.41 21.50 24.17 28.51 20.86 8.65 2.90 -9.94 -3.97
Y3A×K18-54 146.93 -7.74 -4.40 26.30 -4.57 -0.45 2.33 -9.11 -7.30 29.82 2.57 -3.60 25.37 15.70 -3.30 2.78 -17.51 -7.95
Y3A×K18-62 142.05 -7.77 -7.58 28.00 3.93 5.98 2.39 38.34 -4.65 36.63 12.26 18.43 24.45 -7.07 -6.82 2.82 -4.52 -6.73
Y3A×K18-70 137.80 -11.46 -10.34 29.05 -2.48 9.95 2.16 9.95 -14.14 31.75 8.20 2.63 20.16 -10.59 -23.16 3.40 15.65 12.58
长生13
Changsheng 13 (CK)
153.73 26.42 2.51 30.93 25.26 3.02
[1] 朱光琴, 李续中, 师公贤. 谷子不育系同源四倍体秋水仙碱引变试验. 陕西农业科学, 1987(6):33.
[2] 胡洪凯, 石艳华, 王朝斌, 等. “Ch型”谷子显性核不育的遗传及其应用研究. 作物学报, 1993, 19(3):208-217.
[3] 智慧, 王永强, 李伟, 等. 利用野生青狗尾草的细胞质培育谷子质核互作雄性不育材料. 植物遗传资源学报, 2007, 8(3):261-264.
[4] 崔文生, 马烘锡, 张德勇. 谷子雄性不育系“蒜系28”的选育与利用. 中国农业科学, 1979(1):43-46.
[5] 王玉文, 李会霞, 王高鸿, 等. 谷子高度雄性不育系长10A的选育. 甘肃农业科技, 1998(12):12-13.
[6] Wang R Q, Gao J H, Mao L P, et al. Chromosome location of the male_sterility and yellow seedling gene in line 1066A of foxtail millet. Acta Botanica Sinica, 2002, 44(10):1209-1212.
[7] 赵治海, 崔文生, 杜贵, 等. 谷子光(温)敏型不育系821选育及其不育性与光温关系的研究. 中国农业科学, 1996, 29(5):23-31.
[8] 王玉文, 王随保, 李会霞, 等. 谷子光敏雄性不育系选育及应用研究. 中国农业科学, 2003, 36(6):714-717.
[9] 崔贵梅, 牛天堂, 张福耀, 等. 谷子(Setaria italica Beauv.)高异交结实雄性不育系“81-16”的柱头性状观察. 作物学报, 2007, 33(1):149-153.
[10] 田岗, 王玉文, 李会霞, 等. 抗除草剂谷子杂交种长杂谷2号选育研究. 中国农业科技导报, 2009(增):138-141.
[11] 史关燕, 杨成元, 史根生, 等. 谷子杂交新品种晋谷49号的选育及制种技术. 作物杂志, 2012(5):112-113,163.
[12] 张福耀, 常雪华, 常玉卉, 等. 高产、优质、抗除草剂谷子杂交种晋谷50号. 作物杂志, 2012(5):124.
[13] 闫凤岐, 张雅丽, 姚瑞. 杂交谷子亩产创世界之最. 河北农业科技, 2008(1):56.
[14] 邱风仓. 光温敏两系杂交谷子的推广及应用. 河北农业科技, 2008(18):8-9.
[15] 宋国亮, 赵治海. 优质谷子新杂交种张杂谷16号. 种子, 2018, 37(5):116-117.
[16] 刘正理. 谷子杂种优势群的构建方法及研究进展. 河北农业科学, 2010, 14(11):102-104.
[17] Liu Z L, Bai G H, Zhang D D, et al. Heterotic classes and utilization patterns in chinese foxtail millet [Setaria italica (L.) P. Beauv]. Agricultural Sciences, 2014, 5(14):1392-1406.
doi: 10.4236/as.2014.514150
[18] 李素英, 刘丹, 李强, 等. 谷子杂交种产量及产量性状杂种优势的表现型鉴定. 河南农业科学, 2018, 47(8):28-34.
[19] 黄远樟, 刘来福. 作物数量遗传学基础六-配合力:不完全双列杂交. 遗传, 1980, 2(2):43-46.
[20] 王黎明, 严洪冬, 焦少杰, 等. 基于配合力和遗传距离的甜高粱杂种优势预测. 中国农业科学, 2020, 53(14):2786-2794.
[21] Amelework B, Shimelis H, Laing M. Genetic variation in sorghum as revealed by phenotypic and SSR markers: Implications for combining ability and heterosis for grain yield. Plant Genetic Resources, 2016(3):1-13.
[22] Jordan R, Tao Y, Godwin I D, et al. Prediction of hybrid performance in grain sorghum using RFLP markers. Theoretical and Applied Genetics, 2003(106):559-567.
[23] 贾秀苹, 卯旭辉, 岳云, 等. 向日葵主要农艺与品质性状配合力及杂种优势分析. 西北农业学报, 2017, 26(9):1334-1344.
[24] 李志华, 穆婷婷, 刘鑫, 等. 4个谷子不育系主要农艺性状的配合力分析. 作物杂志, 2018(3):61-67.
[25] 张征, 张雪丽, 莫博程, 等. 籼型杂交水稻农艺性状的配合力研究. 作物学报, 2017, 43(10):1448-1457.
[26] 吴立东, 刘亚婷, 钟金仙, 等. 苦瓜亲本配合力、遗传距离与杂种优势的相关性分析. 上海农业学报, 2020, 36(3):30-35.
[27] 陈俊孝, 游艾青, 刘凯. 杂交水稻表型、杂种优势和配合力的关系. 湖北农业科学, 2020, 59(24):24-29.
[1] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[2] Ma Ke, Feng Lei, Zhao Xiatong, Zhang Liguang, Yuan Xiangyang, Dong Shuqi, Guo Pingyi, Song Xi’e. Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10 [J]. Crops, 2022, 38(4): 172-178.
[3] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[4] Li Binghua, Wang Guiqi, Shi Zhigang, Liu Xiaomin, Xu Xian, Zhao Bochui, Cheng Ruhong. Sensitivity of Foxtail Millets (Setaria italica L.) and Weeds to Cyhalofop-Butyl [J]. Crops, 2022, 38(4): 262-266.
[5] Lei Lei, Guan Zheyun, Cao Shiliang, Wang Yumin, Lin Chunjing, Peng Bao, Liu Peng, Zhao Limei, Li Zhigang, Zhang Chunbao. Classification of Soybean Heterotic Groups Based on SSR Molecular Markers for Yield-Related Traits [J]. Crops, 2022, 38(4): 54-61.
[6] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[7] Qin Na, Zhu Cancan, Dai Shutao, Song Yinghui, Li Junxia, Wang Chunyi. Fine Mapping and Functional Analysis of Yellow Leaf Mutant ylm-1 in Foxtail Millet [J]. Crops, 2022, 38(3): 55-62.
[8] Guo Yongxin, Zhou Hao, Sun Peng, Wang Yaqing, Ma Ke, Li Xiaorui, Dong Shuqi, Guo Pingyi, Yuan Xiangyang. Effects of Planting Patterns on Lodging Resistance and Yield of Zhangza 10 in Different Ecological Areas [J]. Crops, 2022, 38(2): 195-202.
[9] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[10] Li Yang, Ren Xiaoci, Li Xiaowei, Li Weitang, Huang Wei, He Zhongguo, Wang Baizhong. Combining Ability and Genetic Analysis of Yield and Main Grain Characteristics of Edible Sunflower [J]. Crops, 2022, 38(2): 75-80.
[11] Duan Liuying, Wu Ting, Li Xia, Xie Jiankun, Hu Biaolin. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice [J]. Crops, 2022, 38(1): 20-30.
[12] Li Huixia, Liu Hong, Wang Yuwen, Tian Gang, Liu Xin, Zheng Zhiyin. Study on the Technique of Removing False Hybrids from Foxtail Millet Herbicide-Resistant Hybrids [J]. Crops, 2021, 37(6): 72-77.
[13] Wang Yuting, Miao Xingfen, Wang Di. Screening and Evaluation of Atrazine-Resistant Germplasm Resources of Foxtail Millet at Germination Stage [J]. Crops, 2021, 37(5): 194-204.
[14] Gao Peng, Guo Meijun, Yang Xuefang, Dong Shuqi, Wen Yinyuan, Guo Pingyi, Yuan Xiangyang. Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress [J]. Crops, 2021, 37(3): 70-77.
[15] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!