Crops ›› 2022, Vol. 38 ›› Issue (4): 172-178.doi: 10.16035/j.issn.1001-7283.2022.04.024

Previous Articles     Next Articles

Effects of Sowing Distance and Sowing Amount on the Growth Characteristics and Yield of Zhangzagu 10

Ma Ke1(), Feng Lei2, Zhao Xiatong1, Zhang Liguang1, Yuan Xiangyang1(), Dong Shuqi1, Guo Pingyi1, Song Xi’e1   

  1. 1College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2Agriculture and Rural Bureau of Fangshan County, Lüliang 033100, Shanxi, China
  • Received:2021-05-30 Revised:2021-07-28 Online:2022-08-15 Published:2022-08-22
  • Contact: Yuan Xiangyang E-mail:15535484140@163.com;yuanxiangyang200@163.com

Abstract:

In order to increase the degree of robotic precision seeding of foxtail millet in mountainous terrain, the effects of sowing distance and sowing amount on the growth characteristics and yield of Zhangzagu 10 was investigated. The growth characteristics and yield of Zhangzagu 10 under various sowing settings were studied using the seed planter JAS-502B. The results showed that with the decrease of the sowing distance and the increase of the sowing rate, the plant height, chlorophyll b content, Ci, Fv/Fm, and number of ears of foxtail millet increased obviously, the stem diameter, leaf area, dry weight, chlorophyll a content, carotenoids content, Pn, Tr, Gs, ETR, nitrate reductase activity, soluble protein content and grain weight were reduced, chlorophyll (a+b) content, NPQ and qP had no significant difference. Under the experimental conditions, sowing through the F and X wheels, the yield of Zhangzagu 10 was increased, while it was decreased by seeding through YJ wheels. There was no significant difference in the yield of Zhangzagu 10 under different sowing distance. The number of spikes was adjusted by the number of tillers, which increased the yield of Zhangzagu 10 under low density conditions.

Key words: Foxtail millet, Zhangzagu 10, Mechanical precision seeding, Gas exchange parameters, Chlorophyll fluorescence parameters, Yield

Table 1

Experimental treatments"

处理
Treatment
播量(粒/穴)
Seeding rate
(grain/hole)
播距
Seeding
distance (cm)
出苗数(万株/hm2
Emergency number
(×104/hm2)
F-7 3~4 7 40.020
F-10 3~4 10 25.020
F-13 3~4 13 19.680
X-7 2~3 7 17.010
X-10 2~3 10 12.000
X-13 2~3 13 11.010
YJ-7 1~2 7 9.345
YJ-10 1~2 10 7.335
YJ-13 1~2 13 6.675

Fig.1

Effects of seeding distance and seeding rate on the agronomic traits of Zhangzagu 10 The different lowercase letters indicate significant difference among the treatments at 0.05 level, the same below"

Table 2

Effects of seeding distance and seeding rate on photosynthetic pigment content of the 2nd leaf from top of Zhangzagu 10 mg/g"

处理
Treatment
Chla Chlb 类胡萝卜素
Carotenoid
Chl(a+b)
F-7 1.61±0.10b 0.59±0.05a 0.32±0.01c 2.20±0.15a
F-10 1.62±0.02b 0.48±0.15b 0.34±0.03bc 2.10±0.17a
F-13 1.63±0.16b 0.47±0.07bc 0.36±0.02ab 2.10±0.23a
X-7 1.67±0.18b 0.45±0.09bcd 0.36±0.02ab 2.12±0.27a
X-10 1.74±0.03ab 0.40±0.01bcd 0.36±0.01ab 2.14±0.04a
X-13 1.74±0.20ab 0.39±0.06bcd 0.37±0.02a 2.13±0.26a
YJ-7 1.80±0.19ab 0.38±0.07cd 0.37±0.01a 2.18±0.26a
YJ-10 1.87±0.26a 0.37±0.06d 0.37±0.01a 2.24±0.30a
YJ-13 1.88±0.14a 0.37±0.03d 0.38±0.02a 2.25±0.16a

Fig.2

Effects of seeding distance and seeding rate on photosynthetic characteristics at the 2nd leaf from top of Zhangzagu 10"

Table 3

Effects of seeding distance and seeding rate on chlorophyll fluorescence parameters of the 2nd leaf from top of Zhangzagu 10"

处理Treatment Fv/Fm ETR [μmol/(m2·s)] NPQ qP
F-7 0.757±0.005a 33.000±7.550c 0.517±0.026a 0.873±0.152a
F-10 0.748±0.013ab 35.333±3.786bc 0.517±0.295a 0.893±0.054a
F-13 0.747±0.015ab 39.000±13.229abc 0.442±0.129a 0.902±0.069a
X-7 0.746±0.007b 41.333±6.429abc 0.450±0.131a 0.910±0.034a
X-10 0.745±0.018ab 42.333±0.577abc 0.451±0.066a 0.893±0.080a
X-13 0.743±0.006ab 43.000±6.000abc 0.446±0.333a 0.900±0.024a
YJ-7 0.738±0.005ab 43.333±5.508abc 0.386±0.205a 0.880±0.035a
YJ-10 0.738±0.007b 45.333±1.528ab 0.391±0.235a 0.840±0.057a
YJ-13 0.734±0.011b 48.000±4.359a 0.416±0.110a 0.781±0.194a

Fig.3

Effects of seeding distance and seeding rate on nitrogen metabolism characteristics of Zhangzagu 10"

Table 4

Effects of seeding distance and seeding rate on the yield of Zhangzagu 10"

处理Treatment 结穗数(穗/hm2)Amount of spikes (spike/hm2) 穗粒重Grain weight per spike (g) 产量Yield (kg/hm2)
F-7 395 019.75±8 660.70a 20.26±1.57h 7994.55±496.95a
F-10 375 018.75±15 000.75a 20.57±1.59h 7729.20±904.20a
F-13 365 018.25±8 660.70a 21.68±1.64g 7906.20±472.50a
X-7 325 016.25±37 751.10b 23.06±1.72f 7512.15±1 182.75a
X-10 315 015.75±30 001.50bc 24.04±1.77e 7548.00±542.10a
X-13 285 014.25±15 000.75c 25.06±1.82d 7160.55±895.80a
YJ-7 230 011.50±22 914.00d 26.57±1.90c 6141.00±1 061.55b
YJ-10 210 010.50±30 001.50d 28.89±2.03b 6106.50±1 295.70b
YJ-13 195 009.75±15 000.75d 30.73±2.13a 5998.95±678.15b
[1] 田欣, 孙敏, 高志强, 等. 播期播量对旱地小麦土壤水分消耗和植株氮素运转的影响. 应用生态学报, 2019, 30(10):3443-3451.
doi: 10.13287/j.1001-9332.201910.028
[2] 任佰朝, 李利利, 董树亭, 等. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42(12):1864-1872.
doi: 10.3724/SP.J.1006.2016.01864
[3] Khan A, Ahmad A, Ali W, et al. Optimization of plant density and nitrogen regimes to mitigate lodging risk in wheat. Agronomy Journal, 2020, 112(4):2535-2551.
doi: 10.1002/agj2.20211
[4] 袁隆平. 水稻强化栽培体系. 杂交水稻, 2001, 16(4):1-3.
[5] 李小朋, 王术, 黄元财, 等. 株行距配置对齐穗期粳稻冠层结构及产量的影响. 应用生态学报, 2015, 26(11):3329-3336.
[6] 唐湘如, 余铁桥. 密度对饲用杂交稻几种酶活性的影响及其与产量和蛋白质含量的关系. 杂交水稻, 2001(6):50-53.
[7] 刘正理, 程汝宏, 张凤莲, 等. 不同密度条件下3种类型谷子品种产量及其构成要素变化特征研究. 中国生态农业学报, 2007, 15(5):135-138.
[8] Luo L P, Yu Z W, Wang D, et al. Effects of plant density and soil moisture on photosynthetic characteristics of flag leaf and accumulation and distribution of dry matter in wheat. Acta Agronomica Sinica, 2011, 37(6):1049-1059.
[9] 杨艳君, 邵东红, 王宏富, 等. 施肥和密度对张杂谷5号光合特性及产量的影响. 植物营养与肥料学报, 2013, 19(3):566-576.
[10] Zheng M J, Chen J, Shi Y H, et al. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Scientific Reports, 2017, 7:41805.
doi: 10.1038/srep41805
[11] Luo Y P, Ni J, Pang D W, et al. Regulation of lignin composition by nitrogen rate and density and its relationship with stem mechanical strength of wheat. Field Crops Research, 2019, 241:107572.
doi: 10.1016/j.fcr.2019.107572
[12] Fang X M, Li Y S, Nie J, et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics,agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 2018, 219:160-168.
doi: 10.1016/j.fcr.2018.02.001
[13] Zhang M, Ding A X, Chen T, et al. How plant density affects maize spike differentiation,kernel set,and grain yield formation in Northeast China?. Journal of Integrative Agriculture, 2018, 17(8):1745-1757.
doi: 10.1016/S2095-3119(17)61877-X
[14] 王新兵, 侯海鹏, 周宝元, 等. 条带深松对不同密度玉米群体根系空间分布的调节效应. 作物学报, 2014, 40(12):2136-2148.
doi: 10.3724/SP.J.1006.2014.02136
[15] Meng X P, Lian Y H, Liu Q, et al. Optimizing the planting density under the ridge and furrow rainwater harvesting system to improve crop water productivity for foxtail millet in semiarid areas. Agricultural Water Management, 2020, 238:106220.
doi: 10.1016/j.agwat.2020.106220
[16] 李顺国, 刘斐, 刘猛, 等. 新时期中国谷子产业发展技术需求与展望. 农学学报, 2018, 8(6):96-100.
[17] 畅灼卓, 王雅情, 冯雷, 等. 谷子精量播种机播种参数对晋谷21号生长特性与产量的影响. 农业工程学报, 2020, 36(12):22-29.
[18] 贾淑贤, 白秀英, 叶世峰, 等. 谷子光(温)敏两系杂交种张杂谷系列品种介绍. 中国种业, 2010(12):77-78.
[19] 罗健, 王鹏远, 高伟, 等. 不同种植密度对谷子农艺性状及产量的影响. 现代农业科技, 2019(13): 20,22.
[20] 吐尼沙古·热衣木. 张杂谷不同密度栽培试验. 农村科技, 2017(3):14-15.
[21] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[22] 黄瑞冬, 阚魏, 蒋文春. 高粱叶片硝酸还原酶活性及含氮量与产量相关性分析. 沈阳农业大学学报, 2008, 39(5):611-614.
[23] 邓丽莉, 潘晓倩, 生吉萍, 等. 考马斯亮蓝法测定苹果组织微量可溶性蛋白含量的条件优化. 食品科学, 2012, 33(24):185-189.
[24] 杨慧杰, 原向阳, 祁祥, 等. 谷子对拔节期弱光胁迫的光合生理响应. 核农学报, 2017, 31(2):386-393.
doi: 10.11869/j.issn.100-8551.2017.02.0386
[25] Yuan X Y, Guo P Y, Qi X, et al. Safety of herbicide sigma broad on radix isatidis (Isatis indigotica Fort.) seedlings and their photosynthetic physiological responses. Pesticide Biochemistry and Physiology, 2013, 106(1/2):45-50.
doi: 10.1016/j.pestbp.2013.04.002
[26] 武维华. 植物生理学. 北京: 科学出版社, 2008.
[27] 陈传永, 侯海鹏, 李强, 等. 种植密度对不同玉米品种叶片光合特性与碳、氮变化的影响. 作物学报, 2010, 36(5):871-878.
[28] 肖继兵, 刘志, 凡信, 等. 种植方式和密度对高粱群体结构和产量的影响. 中国农业科学, 2018, 51(22):4264-4276.
[29] 杨晓璐, 杨航, 王季春, 等. 马铃薯行株距比对光合特性及产量品质的影响. 园艺学报, 2018, 45(8):1563-1574.
[30] Ren B Z, Liu W, Zhang J W, et al. Effects of plant density on the photosynthetic and chloroplast characteristics of maize under high-yielding conditions. The Science of Nature, 2017, 104(12):1-11.
doi: 10.1007/s00114-016-1423-7
[31] Massacci A, Nabiev S L, Pietrosanti L, et al. Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiology and Biochemistry, 2008, 46(2):189-195.
pmid: 18053735
[32] 骆兰平, 于振文, 王东, 等. 土壤水分和种植密度对小麦旗叶光合性能和干物质积累与分配的影响. 作物学报, 2011, 37(6):1049-1059.
[33] 张雪悦, 左师宇, 田礼欣, 等. 不同密度下越冬型黑麦产量形成的光合特性差异. 草业学报, 2019, 28(3):131-141.
[34] Nunes-Nesi A, Fernie A R, Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant, 2010, 3(6):973-996.
doi: 10.1093/mp/ssq049 pmid: 20926550
[35] Patterson T G, Moss D N, Brun W A. Enzymatic changes during the senescence of field-grown wheat. Crop Science, 1980, 20(1):15-18.
doi: 10.2135/cropsci1980.0011183X002000010005x
[36] 孙常青, 杨艳君, 郭志利, 等. 施肥和密度对杂交谷可溶性糖、可溶性蛋白及硝酸还原酶的影响. 植物营养与肥料学报, 2015, 21(5):1169-1177.
[37] 卢霖, 董志强, 董学瑞, 等. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响. 作物学报, 2015, 41(12):1870-1879.
doi: 10.3724/SP.J.1006.2015.01870
[38] 黄学芳, 黄明镜, 刘化涛, 等. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响. 作物杂志, 2018(4):106-113.
[1] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[2] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
[3] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[4] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[5] Li Zujun, Jiang Xue, Yang Tonglian, Wu Chaoxin, Zhang Xichun, Jiang Xuehai, Long Wuhua, Zhang Yushan, Zhu Susong. Effects of Different Fertilizer Ratios on Yield and Taste Quality of Guizhouhe Goudang No.1 [J]. Crops, 2022, 38(4): 160-166.
[6] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[7] Yu Guoyi, Kong Lingcong, Zhang Liang, Wei Zhi, Wang Yongjiu, Wang Zhi, Du Xiangbei. Effects of Different New Type Fertilizers on Wheat Photosynthetic Characteristics, Canopy Structure and Yield [J]. Crops, 2022, 38(4): 193-198.
[8] Zhou Jihong, Wang Junying, Meng Fanyu, Tong Guoxiang, Mei Li, Liu Guoming, Wang Yan, Luo Jun, Xie Chunyuan. Effects of Tillage Methods on Sowing Quality, Yield and Benefit of Wheat [J]. Crops, 2022, 38(4): 199-204.
[9] Zhou Wuxian, Li Mengge, Tan Xuhui, Wang Youyuan, Wang Hua, Jiang Xiaogang, Duan Yuanyuan, Zhang Meide. Effects of Sowing Density on Growth, Nutritional Quality and Soil Enzyme Activity of Pinellia ternata in Different Seasons [J]. Crops, 2022, 38(4): 205-213.
[10] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[11] Qiao Yujia, Wei Ling, Xiao Junhong, Liu Bo, Yang Haifeng, Duan Xueyan. Analysis on the Yield Differences of Huanghuaihai Summer Soybeans in Different Years and Locations [J]. Crops, 2022, 38(4): 221-226.
[12] Liang Weiqin, Jia Li, Guo Liming, Li Yinglan, Hu Yafeng, Chen Xiaohua, Ma Xufeng, Li Jing. Effects of Irrigation and Nitrogen Application on Dry Matter Accumulation and Nitrogen Transport of Spring Wheat [J]. Crops, 2022, 38(4): 242-248.
[13] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[14] Zhang Haipeng, Chen Zhiqing, Wang Rui, Lu Hao, Cui Peiyuan, Yang Yanju, Zhang Hongcheng. Effects of Nitrogen Fertilizer Combined with Nano-Magnesium on Rice Yield, Grain Quality and Nitrogen Use Efficiency [J]. Crops, 2022, 38(4): 255-261.
[15] Li Binghua, Wang Guiqi, Shi Zhigang, Liu Xiaomin, Xu Xian, Zhao Bochui, Cheng Ruhong. Sensitivity of Foxtail Millets (Setaria italica L.) and Weeds to Cyhalofop-Butyl [J]. Crops, 2022, 38(4): 262-266.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!