Crops ›› 2023, Vol. 39 ›› Issue (2): 77-82.doi: 10.16035/j.issn.1001-7283.2023.02.011

Previous Articles     Next Articles

Changes of Insect Resistance and Its Correlation Analysis with Yield Traits in Transgenic Bt Cotton from 2005 to 2020

Tang Zhongjie1(), Xie Deyi1(), Xu Shouming2, Nie Lihong1, Lü Shuping1, Wang Mingkun3   

  1. 1Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, Henan,China
    2State Key Laboratory of Cotton Biology, Henan University, Kaifeng 475004, Henan, China
    3Dengzhou Agricultural Technology Extension Center, Dengzhou 474150, Henan, China
  • Received:2021-09-28 Revised:2021-10-09 Online:2023-04-15 Published:2023-04-11

Abstract:

To provide references for the sustainable use of transgenic Bt cotton in both scientific research and production, this study recorded Yinshan 8 of transgenic Bt cotton for 16 consecutive years since 2005. The results indicated that with the increase of planting-generations, the adjusted mortality of the second, third, and fourth generations of cotton bollworm larvae, and the expression of insecticidal protein of leaves and bolls at bolling stage of Yinshan 8 showed a linear increase in varying degrees, and an increasing trend was also observed for the linear regression of lint yield. The expression of insecticidal protein in leaves at the seedling stage, and in leaves and buds at the bud stage decreased linearly. Correlation analysis suggested that there was a positive correlation between the resistance of insect-resistant cotton and lint yield. The boll number and ginning outturn were important factors constituting the lint yield, which reached extremely significant and significant levels, respectively. The exogenous Bt gene could be stably passed to offspring after being transferred into cotton. Through kanamycin-based identification and systematic selection, the insect-resistance phenotype of transgenic Bt cotton could be maintained for multiple generations. Through purification and rejuvenation, it was even possible to improve the insect resistance of the transgenic Bt cotton in a specific growth period or in certain organs.

Key words: Transgenic Bt cotton, Insect resistance, Yield traits, Correlation analysis

Table 1

Resistance classification standards provided by Institute of Plant Protection, CAAS (2005)"

抗性
Resistance
等级
Grade
按室内幼虫3d
校正死亡率
Three days adjusted
mortality by
indoor larva (%)
按室内幼虫5d
校正死亡率
Five days adjusted
mortality by
indoor larva (%)
高抗High resistance 1 ≥50 ≥70
抗Resistance 2 30~50 40~70
中抗Medium resistance 3 20~30 20~40
低抗Low resistance 4 <20 <20
感Sensitive 5 同非转基因棉花 同非转基因棉花

Fig.1

Trend of calibrated mortality of cotton bollworm larvae of Bt transgenic cotton Yinshan 8 from 2005 to 2020"

Fig.2

Trend of Bt toxin protein expression of transgenic cotton Yinshan 8 from 2005 to 2020"

Fig.3

Yield and traits trend of transgenic cotton Yinshan 8 from 2005 to 2020"

Table 2

Correlation analysis between corrected mortality and yield traits of transgenic Bt cotton bollworm"

项目
Item
第2代
The second
generation
第3代
The third
generation
第4代
The fourth
generation
株铃数
Bolls number
per plant
铃重
Boll
weight
衣分
Ginning
outturn
皮棉产量
Lint yield
第2代The second generation 1.00
第3代The third generation 0.09 1.00
第4代The fourth generation 0.63** 0.08 1.00
株铃数Bolls number per plant 0.25 0.15 0.39 1.00
铃重Boll weight 0.01 -0.49* -0.25 -0.11 1.00
衣分Ginning outturn 0.14 0.44 0.41 0.35 0.02 1.00
皮棉产量Lint yield 0.24 0.11 0.36 0.94** 0.16 0.54* 1.00
[1] 喻树迅, 范术丽. 国产转基因棉花研发及产业化. 生物产业技术, 2010(3):35-41.
[2] 钟云. 我国转基因抗虫棉打破国外垄断. 致富天地, 2011(4):79-79.
[3] 崔洪志, 郭三堆. 我国抗虫转基因棉花研究取得重大进展. 中国农业科学, 1996, 29(1):93-95.
[4] 郭三堆, 倪万潮, 徐琼芳. 编码杀虫蛋白融合基因和表达载体及其应用: 中国,ZL95119563.8. 1995-12-28.
[5] 张京飞. 转Bt基因抗虫棉抗虫性研究与新品系筛选. 保定:河北农业大学, 2014.
[6] 陈松, 吴敬音, 周宝良, 等. 转Bt基因棉Bt毒蛋白表达量的时空变化. 棉花学报, 2000, 12(4):189-193.
[7] 周桂生, 周福才, 谢义明, 等. 温度胁迫对转Bt基因抗虫棉毒蛋白的表达和棉铃虫死亡率的影响. 棉花学报, 2009, 21(4):302-306.
[8] 刘海涛, 郭香墨, 夏敬源, 等. 抗虫杂交棉F1代与亲本Bt蛋白表达量及抗虫差异性研究. 棉花学报, 2000, 12(5):261-263.
[9] 余恩, 蔡芸菲, 赵茹冰, 等. 2个转基因抗虫杂交棉Bt蛋白含量的时空表达特性研究. 浙江大学学报(农业与生命科学版), 2016, 42(1):17-22.
[10] 李汝忠, 王景会, 王宗文, 等. 转Bt基因抗虫棉杂交后代的抗性表现与抗虫育种策略. 山东农业科学, 2000(5):7-9.
[11] 崔峰, 徐洪富, 许永玉, 等. 抗虫棉研究的进展、问题与对策. 植物保护学报, 2022, 29(4):371-376.
[12] 马宗斌, 刘桂珍, 严根土, 等. 施氮方式对转基因棉花Bt蛋白含量及产量的影响. 生态学报, 2013, 33(23):7601-7609.
[13] 李汝忠, 沈法富, 王宗文, 等. 转Bt基因抗虫棉抗虫性遗传研究. 棉花学报, 2001, 13(5):268-272.
[14] 曹涤环, 胡建辉. 转基因抗虫棉不抗虫的原因及对策. 中国棉麻产业经济研究, 2011(5):16-18.
[15] 夏兰芹. Bt杀虫基因在转基因抗虫棉中的表达与遗传稳定性的研究. 北京: 中国农业科学院, 2000.
[1] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[2] Zhao Bin, Ji Changhao, Sun Hao, Zhu Bin, Wang Rui, Chen Xiaodong. Comprehensive Assessment of the Yield and Quality of Forage and Grain among Multi-Rowed Barley Lines [J]. Crops, 2022, 38(6): 93-97.
[3] Jia Xiuping, Mao Xuhui, Liang Gensheng, Liu Runping, Liu Feng, Wang Xingzhen. Analysis of Physiological and Biochemical Mechanism and Growth and Development Characteristics of Saline and Alkali Resistance in Sunflower [J]. Crops, 2022, 38(5): 146-152.
[4] Xiao Mingkun, Liu Guanghua, Song Jiming, Liu Qian, Duan Chunfang, Jiang Tailing, Zhang Linhui, Yan Wei, Shen Shaobin, Zhou Yingchun, Xiong Xiankun, Luo Xin, Bai Lina, Li Yuexian. Analysis of Agronomic Characteristics of Different Cassava Varieties (Lines) and Screening of High-Yielding Varieties (Lines) [J]. Crops, 2022, 38(4): 77-82.
[5] Yang Chaozhen, Fang Haidong, Su Yan, Chen Xiaoyan, Liu Xiaoli, Yang Zhongyi. Study on Ecological and Geographic Distribution of Rice Planthopper Resistance Diversity of Rice Germplasms in Yunnan [J]. Crops, 2022, 38(3): 109-114.
[6] Wang Siyu, Zuo Wenbo, Zhu Kaili, Guo Huimin, Xing Bao, Guo Yuqing, Bao Yuying, Yang Xiushi, Ren Guixing. Analysis and Evaluation of Agronomic Characteristics and Nutritional Qualities of 71 Quinoa Accessions [J]. Crops, 2022, 38(3): 63-72.
[7] Zhao Lirong, Ma Ke, Zhang Liguang, Tang Sha, Yuan Xiangyang, Diao Xianmin. Analysis of Agronomic Traits and Quality of Foxtail Millet Varieties in Different Ecological Regions [J]. Crops, 2022, 38(2): 44-53.
[8] Gao Fengyun, Siqin Bateer, Zhou Yu, Jia Xiaoyun, Su Shaofeng, Zhao Xiaoqing, Jin Xiaolei. Association Analysis of Crude Fat and Fatty Acid Components in Flax Based on SSR Markers [J]. Crops, 2022, 38(1): 44-49.
[9] Liu Wenlong, Ning Shanghui, Cao Mingfeng, Zhu Li, Gao Yuzhen, Zhang Xuewei, Wen Zixiang, Jiang Baodi, Jing Yanqiu, Deng Yong. Correlation Analysis of Soil Micronutrient and Chemical Components of Tobacco Leaves in Taoyuan County [J]. Crops, 2021, 37(5): 176-180.
[10] Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49.
[11] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
[12] Zhou Qilong. Grey Relational Grade Evaluation of 19 Oat Varieties Introduced in Ali of Tibet [J]. Crops, 2021, 37(1): 26-31.
[13] Zhang Xiaoyan, Wang Xiaonan, Cao Kun, Sun Yufeng. Correlation Analysis of Fiber Yield and Yield Components in Five Industrial Hemp Varieties (Lines) [J]. Crops, 2020, 36(4): 121-126.
[14] Wang Zhongqiu, Ying Pengfei, Chen Mengtao, He Qiongying, Hu Xin. Analysis of Grain and Quality Traits of Chromosome Arm Substitution Lines of Triticum dicoccoides in the Background of Triticum aestivum [J]. Crops, 2020, 36(4): 37-44.
[15] Yang Bin, Yan Xue, Wen Hongwei, Wang Shuguang, Lu Lahu, Fan Hua, Jing Ruilian, Sun Daizhen. Study on the Evaluation of Stay-Green Traits of Wheat and Its Correlation with Yield-Related Traits under Different Water Conditions [J]. Crops, 2020, 36(4): 45-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!