Crops ›› 2023, Vol. 39 ›› Issue (4): 159-164.doi: 10.16035/j.issn.1001-7283.2023.04.023

Previous Articles     Next Articles

Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area

Hu Xinyuan1(), Liu Yongqiang2(), Xie Kuizhong2, Sun Xiaohua2, Luo Aihua2   

  1. 1Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
    2Potato Research Institute of Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2023-02-22 Revised:2023-04-23 Online:2023-08-15 Published:2023-08-15

Abstract:

Reducing chemical fertilizer and replacing chemical fertilizer with organic fertilizer are important agricultural measures for green and high-quality cultivation at present. Compared with traditional fertilization (CK), four treatments of fertilizer replacing mode, NR15/C5 (inorganic N reduction by 15% and organic N substitution by 5%), NR30/C10 (inorganic N reduction by 30% and organic N substitution by 10%), NR45/C15 (inorganic N reduction by 45% and organic N substitution by 15%) and NR60/C20 (inorganic N reduction by 60% and organic N substitution by 20%), were set. The effects of organic fertilizer replacing nitrogen fertilizer on soil physical properties, nutrient, enzyme activities, growth and quality of potato were studied. The results showed that with the increase of nitrogen fertilizer replacement, potato plant height, yield, dry matter content and relative chlorophyll content increased compared with the control, increasing first and then decreasing, and NR45/C15 reached a significant level compared with the control increment. Potato stem thick, protein, organic matter, acid protease and alkaline phosphatase activities increased, soil total phosphorus and available phosphorus increased, NR45/C15 and NR60/C20 treatments increased significantly; soil pH, salinity, total nitrogen and alkaline nitrogen contents decreased. It was showed that in the mode of replacing part of nitrogen fertilizer, two forms of nitrogen formed complementary and fertilizer balance through digestion and absorption, increased the utilization efficiency of fertilizer, improved soil structure, and promoted potato growth and dry matter accumulation.

Key words: Arid area, Potato, Nitrogen fertilizer reduction, Organic fertilizer substitution, Soil characteristics, Quality

Table 1

Nitrogen reduction and organic fertilizer replacement kg/hm2"

处理
Treatment
N P2O5 K2O 有机肥
Organic fertilizer
传统施肥
Traditional fertilization (CK)
180 90 108 0
NR15/C5 162 90 108 288
NR30/C10 144 90 108 576
NR45/C15 126 90 108 864
NR60/C20 108 90 108 1152

Fig.1

Ridge film mulching mode"

Fig.2

Effects of organic fertilizer replacing nitrogen fertilizer on growth characteristics of potato Different lowercase letters indicate significant differences among different treatments (P < 0.05), the same below"

Fig.3

Effects of organic fertilizer replacing nitrogen fertilizer on potato quality"

Fig.4

Effects of organic fertilizer replacing nitrogen fertilizer on soil characteristics of potato continuous cropping"

Table 2

Effects of organic fertilizer replacing nitrogen fertilizer on soil nutrient under continuous cropping of potato"

处理
Treatment
碱解氮
Alkaline hydrolysis
of nitrogen (mg/kg)
有效磷
Available phosphorus
(mg/kg)
速效钾
Quick-acting
potassium (mg/kg)
全氮
Total N
(g/kg)
全磷
Total P
(g/kg)
全钾
Total K
(g/kg)
CK 114.13±5.24a 22.20±3.13b 148.67±14.06b 0.95±0.13a 0.88±0.07a 21.77±3.31a
NR15/C5 111.40±3.26ab 25.50±2.06b 161.00±9.56ab 0.91±0.08a 0.89±0.09a 20.77±2.23a
NR30/C10 94.03±7.42b 31.63±3.22ab 216.00±8.01a 0.86±0.08b 0.92±0.08a 22.67±0.95a
NR45/C15 79.17±3.58c 35.87±1.78ab 200.33±12.44a 0.86±0.16b 0.96±0.15a 21.36±4.27a
NR60/C20 82.83±7.51c 43.63±1.66a 191.00±10.25a 0.72±0.20c 0.95±0.12a 23.80±2.81a

Table 3

Effects of organic fertilizer replacing nitrogen fertilizer on soil enzyme activity of potato continuous cropping"

处理
Treatment
脲酶
Urease [NH3-N mg/(g·d)]
酸性蛋白酶
Acid protease (U/g)
碱性磷酸酶
Alkaline phosphatase (U/g)
过氧化氢酶
Catalase [0.1mol/L KMnO4 mL/(g·h)]
蔗糖酶
Sucrase [Glucose mg/(g·d)]
CK 4308.0±245.1a 10.20±1.13c 13.81±2.21c 16.33±0.42a 0.32±0.02c
NR15/C5 4033.5±102.4b 10.13±1.09c 14.08±1.65c 16.00±0.33a 0.34±0.02c
NR30/C10 3917.7±221.4bc 12.30±0.79b 14.94±1.42bc 15.82±0.89a 0.34±0.02c
NR45/C15 3812.8±97.0c 13.63±1.25ab 15.86±0.98b 16.45±0.85a 0.37±0.01b
NR60/C20 3786.0±312.2c 15.07±0.62a 17.11±1.15a 15.42±0.63a 0.43±0.01a
[1] 刘洋, 高明杰, 何威明, 等. 世界马铃薯生产发展基本态势及特点. 中国农学通报, 2014, 30(20):78-86.
[2] 王泽农. 如何在化肥农药减施情况下实现增产增效?. 农民日报,2020-06-05(7).
[3] Haverkort A J, Struik P C. Yield levels of potato crops: recent achievements and future prospects. Field Crops Research, 2015, 182:76-85.
doi: 10.1016/j.fcr.2015.06.002
[4] 王小英, 同延安, 刘芬, 等. 陕西省马铃薯施肥现状评价. 植物营养与肥料学报, 2013, 19(2):471-479.
[5] 张福锁, 崔振岭, 王激清, 等. 中国土壤和植物养分管理现状与改进策略. 植物学通报, 2007, 24(6):687-694.
[6] Ontl T A, Hofmockel K S, Cambardella C A, et al. Topographic and soil influences on root productivity of three bioenergy cropping systems. New Phytologist, 2013, 199(3):727-737.
doi: 10.1111/nph.12302 pmid: 23692583
[7] 董文, 范祺祺, 胡新喜, 等. 马铃薯养分需求及养分管理技术研究进展. 中国蔬菜, 2017(8):21-25.
[8] 孙若梅. 绿色农业生产:化肥减量与有机肥替代进展评价. 重庆社会科学, 2019(6):33-43.
[9] Wang M Y, Wu C N, Cheng Z H, et al. Soil chemical property changes in eggplant/garlic relay intercropping systems under continuous cropping. PLoS ONE, 2014, 9(10):e111040.
doi: 10.1371/journal.pone.0111040
[10] Liu H, Pan F J, Han X Z, et al. Response of soil fungal community structure to longterm continuous soybean cropping. Frontiers in Microbiology, 2018, 9:3316.
doi: 10.3389/fmicb.2018.03316
[11] 柳永强, 胡新元. 旱区马铃薯化肥减量/绿色替代模式研究. 中国农学通报, 2022, 38(15):85-90.
doi: 10.11924/j.issn.1000-6850.casb2021-0629
[12] 李成晨, 索海翠, 罗焕明, 等. 化肥减施和施肥方式对马铃薯产量和块茎氮素积累的影响. 中国农业科技导报, 2021, 23 (9):173-183.
[13] 常钦.三大粮食作物化肥农药减量增效. 人民日报,2019- 12- 19(7).
[14] 刘志都, 严国富, 僧珊珊, 等. 化肥与农药减施替代集成技术对马铃薯生长及产量的影响. 现代农业科技, 2020(11):50-53.
[15] 李刚, 田伟, 杨志慧, 等. 有机肥施用量对马铃薯品质和土壤环境的影响. 浙江农业学报, 2014, 26(6):1573-1577.
[16] 吴凤娉. 长期过量施用化肥对农业生态环境的负面影响及对策. 中国农业信息, 2016(10):67-68.
[17] 张子义, 樊明寿. 旱作马铃薯养分资源管理研究进展. 内蒙古农业大学学报, 2009, 30(3):271-274.
[18] Xu X, Ping H, Yang F, et al. Methodology of fertilizer recommendation based on yield response and agronomic efficiency for rice in China. Field Crops Research, 2017(26):33-42.
[19] 巨晓棠. 理论施氮量的改进及验证——兼论确定作物氮肥推荐量的方法. 土壤学报, 2015, 52(2):249-261.
[1] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[2] Chen Jian, Qi Wen, Jiang Hailing, Qian Zhongcang. Effects of Broccoli Waste Composting on Seedling Quality and Yield of Rice [J]. Crops, 2023, 39(4): 136-143.
[3] Ding Kaixin, Wang Lichun, Tian Guokui, Wang Haiyan, Li Fengyun, Pan Yang, Pang Ze, Shan Ying. Review on the Response Reasearch of Potato Growth and PhysiologicalCharacteristics to Water Stress [J]. Crops, 2023, 39(4): 16-21.
[4] Zhai Xinna, Yang Jiawei, Xu Chunjiang, Qi Lipan, Tian Zaimin, Feng Yan, Yin Jiang, Gong Xuechen. Effects of Grafting on Interspecific Hybridization Compatibility of Potato and Its Physiological Regulation Mechanism [J]. Crops, 2023, 39(4): 182-187.
[5] Le Lihong, Liu Kaili, Chen Zhongping, Wang Binqiang, Tang Zhou, Cheng Feihu, Zhang Kun. Effects of Application Time of N Fertilizer at Panicle Differentiation Stage on the Nitrogen Use Efficiencies, Yield and Quality of One-Season Indica-Japonica Hybrid Rice [J]. Crops, 2023, 39(4): 195-201.
[6] Zhang Hanwen, Liu Dan, Wang Xuerui, Li Wangshu, Lu Qiang, Wang Shufeng, Zhao Jianan, Wang Yubo, Zhang He, Li Caifeng. Effects of Superimposed Application of BR in Different Periods on Yield and Quality of Sugar Beet under Saline-Alkali Stress [J]. Crops, 2023, 39(4): 237-244.
[7] Li Qingfeng, Gao Jie, Peng Qiu. Genetic Diversity Analysis of Agronomic and Quality Characteristics of Amaranthus Resources in Guizhou Province [J]. Crops, 2023, 39(4): 60-64.
[8] Lou Shubao, Yang Mengping, Xing Jinyue, Zhai Lingxia, Wang Hui, Liu Chunsheng, Wang Lichun, Song Jiling. Molecular Marker-Assisted Screening of Potato Germplasm Resources for Virus Resistance [J]. Crops, 2023, 39(4): 65-70.
[9] Pan Wenjing, Sun Yanan, Gao Lusi, Qu Mengnan, Zhang Weiyao, Fu Chunxu, Jiang Shibo, Jiang Chengxi, Fu Yashu, Wang Jinxing. Comprehensive Evaluation of Agronomic Characteristics of Soybean Resources in China and Europe [J]. Crops, 2023, 39(4): 91-97.
[10] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[11] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[12] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[13] Wang Shuoli, Ding Songshuang, Wang Ronghao, Li Linlin, Wu Chuang, Wang Jian, Shi Xiangdong. Difference and Correlation Analysis of Mineral Element Contents and Sensory Qualities between Yunnan Province of China and Nicaragua Cigar Tobacco Leaves [J]. Crops, 2023, 39(3): 139-147.
[14] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[15] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!