Crops ›› 2023, Vol. 39 ›› Issue (4): 237-244.doi: 10.16035/j.issn.1001-7283.2023.04.034

Previous Articles     Next Articles

Effects of Superimposed Application of BR in Different Periods on Yield and Quality of Sugar Beet under Saline-Alkali Stress

Zhang Hanwen(), Liu Dan, Wang Xuerui, Li Wangshu, Lu Qiang, Wang Shufeng, Zhao Jianan, Wang Yubo, Zhang He, Li Caifeng()   

  1. College of Agriculture, Northeast Agricultural University, Harbin 150038, Heilongjiang, China
  • Received:2022-03-11 Revised:2022-03-28 Online:2023-08-15 Published:2023-08-15

Abstract:

In order to explore the effects of superimposed spraying of brassinolide (BR) in different periods on improving the stress resistance of sugar beet under saline-alkali stress, the sugar beet variety KWS0143 was used as the test material to conduct a simulated saline-alkali experiment in barrels. A total of five treatments were set, spraying water treatment (CK), and superimposed spraying BR in the periods of leaf clump formation and tuberous root expansion (QZ), superimposed spraying BR in the periods of tuberous root expansion and sugar accumulation (ZH), superimposed spraying BR in the periods of foliar clump formation and sugar accumulation (QH), and superimposed spraying BR in the periods of leaf clump formation, tuberous root expansion and sugar accumulation under saline-alkali stress (QZH). The results showed that the contents of photosynthetic pigments, photosynthetic fluorescence parameters and RuBP carboxylase activity after BR treatments were improved compared with CK. The contents of betaine, amino acids, protein and nitrate ions and reducing sugar were lower than that of CK, and the sucrose content was higher than that of CK, and the effects of QZH treatment was the best. Compared with the CK treatment, the tuberous root yields of the QH and QZ treatments were increased by 12.58% and 9.88%, respectively, the sugar contents of the QZH and QZ treatments were increased by 5.1 and 4.6 degrees, respectively, and the sugar yield of the QZH treatment was increased by 12.79%. QZH treatment could effectively reduce the accumulation of non-sugar substances in the beet tuber, improve the quality of the tuberous root, and increase the sugar yield of the sugar beet.

Key words: Sugar beet, Salt-alkali stress, Photosynthetic index, BR, Quality

Table 1

Effects of superimposed spraying of BR on RuBP carboxylase activities in different periods μmol/(mL?h)"

处理
Treatment
取样日期(月-日)Sampling date (month-day)
07-04 07-22 08-10 08-28 09-15
CK 80.722±0.078e 82.579±0.288d 108.153±0.040e 109.400±0.118d 141.553±0.251b
QZ 87.643±0.045c 89.521±0.207b 115.547±0.321c 117.316±0.236b 131.515±0.278d
ZH 81.698±0.463d 84.289±0.240c 110.572±0.058d 115.491±0.292e 129.312±0.161e
QH 88.566±0.208b 89.557±0.343b 182.645±0.305a 193.505±0.321a 207.285±0.207a
QZH 89.772±0.015a 91.654±0.300a 119.583±0.360b 116.631±0.264c 138.641±0.300c

Table 2

Effects of superimposed spraying of BR on chlorophyll a contents in different periods mg/g FW"

处理
Treatment
取样日期(月-日)Sampling date (month-day)
07-04 07-22 08-10 08-28 09-15
CK 0.81±0.01b 0.56±0.01b 0.95±0.05a 0.58±0.02d 0.52±0.01b
QZ 1.17±0.09a 0.79±0.25a 0.87±0.25ab 0.76±0.04ab 0.72±0.05a
ZH 0.88±0.07b 0.48±0.03b 0.66±0.00b 0.65±0.01cd 0.78±0.07a
QH 1.13±0.04a 0.96±0.07a 0.76±0.08ab 0.70±0.06bc 0.45±0.04b
QZH 1.16±0.02a 1.00±0.09a 0.95±0.16a 0.78±0.04a 0.81±0.08a

Table 3

Effects of superimposed spraying of BR on chlorophyll b contents in different periods mg/g FW"

处理
Treatment
取样日期(月-日)Sampling date (month-day)
07-04 07-22 08-10 08-28 09-15
CK 0.17±0.01b 0.12±0.01a 0.15±0.01a 0.07±0.00b 0.09±0.00c
QZ 0.26±0.02a 0.19±0.03a 0.14±0.02a 0.15±0.02a 0.13±0.01b
ZH 0.17±0.02b 0.13±0.07a 0.14±0.05a 0.14±0.02a 0.15±0.02a
QH 0.24±0.03a 0.18±0.04a 0.12±0.02a 0.12±0.04a 0.15±0.01a
QZH 0.26±0.01a 0.13±0.12a 0.15±0.01a 0.16±0.01a 0.16±0.01a

Table 4

Effects of superimposed spraying of BR on carotenoid contents in different periods mg/g FW"

处理
Treatment
取样日期(月-日)Sampling date (month-day)
07-04 07-22 08-10 08-28 09-15
CK 0.26±0.01b 0.16±0.01b 0.28±0.02ab 0.23±0.01b 0.17±0.01b
QZ 0.37±0.02a 0.30±0.01a 0.28±0.02ab 0.26±0.01a 0.23±0.03a
ZH 0.27±0.01b 0.16±0.02b 0.21±0.01c 0.20±0.01c 0.16±0.02b
QH 0.36±0.01a 0.30±0.02a 0.24±0.02bc 0.23±0.01b 0.26±0.02a
QZH 0.38±0.02a 0.33±0.02a 0.30±0.04a 0.27±0.02a 0.27±0.02a

Table 5

Effects of superimposed spraying of BR on the YⅡ of leaves in different periods"

处理
Treatment
取样日期(月-日)Sampling date (month-day)
07-04 07-22 08-10 08-28 09-15
CK 0.57±0.02c 0.66±0.02c 0.65±0.05ab 0.65±0.04a 0.37±0.01d
QZ 0.63±0.01a 0.75±0.01a 0.65±0.02ab 0.67±0.11a 0.46±0.04c
ZH 0.60±0.01b 0.68±0.02bc 0.68±0.02ab 0.70±0.02a 0.52±0.01b
QH 0.63±0.02a 0.71±0.03b 0.63±0.01b 0.71±0.03a 0.52±0.01b
QZH 0.66±0.04a 0.77±0.04a 0.68±0.03a 0.76±0.03a 0.58±0.02a

Table 6

Effects of superimposed spraying of BR on leaf qL in different periods"

处理
Treatment
取样日期(月-日)Sampling date (month-day)
07-04 07-22 08-10 08-28 09-15
CK 0.65±0.01b 0.59±0.01b 0.65±0.10a 0.46±0.00c 0.28±0.10c
QZ 0.97±0.02a 0.66±0.03a 0.65±0.03a 0.76±0.04a 0.46±0.02b
ZH 0.64±0.01b 0.60±0.01b 0.61±0.01a 0.54±0.01b 0.56±0.01ab
QH 0.97±0.01a 0.64±0.02a 0.63±0.01a 0.50±0.01bc 0.51±0.02ab
QZH 1.05±0.10a 0.67±0.03a 0.67±0.01a 0.77±0.07a 0.60±0.07a

Table 7

Effects of superimposed BR spraying on leaf NPQ in different periods"

处理
Treatment
取样日期(月-日)Sampling date (month-day)
07-04 07-22 08-10 08-28 09-15
CK 0.22±0.01a 0.12±0.01a 0.07±0.01a 0.22±0.04a 0.26±0.04a
QZ 0.21±0.01a 0.10±0.01b 0.08±0.01a 0.19±0.03a 0.21±0.02b
ZH 0.22±0.02a 0.10±0.01b 0.07±0.01a 0.22±0.04a 0.23±0.02ab
QH 0.21±0.01a 0.10±0.01b 0.08±0.00a 0.21±0.02a 0.23±0.01ab
QZH 0.15±0.01b 0.08±0.01c 0.07±0.01a 0.18±0.01a 0.21±0.01b

Table 8

Correlation analysis of photosynthetic parameters and parameters of photosystem II"

指标
Parameter
叶绿素a含量
Chlorophyll a content
叶绿素b含量
Chlorophyll b content
类胡萝卜素含量
Carotenoid content
Y qL NPQ
叶绿素a含量Chlorophyll a content 1.000
叶绿素b含量Chlorophyll b content 0.257 1.000
类胡萝卜素含量Carotenoid content 0.870** 0.412 1.000
Y 0.661** 0.030 0.834** 1.000
qL 0.644** 0.087 0.828** 0.897** 1.000
NPQ -0.528* -0.099 -0.663** -0.691** -0.498 1.000

Fig.1

Effects of superimposed spraying BR on betaine contents in different periods Different lowercase letters indicate significant difference between treatments at the P < 0.05 level, the same below"

Fig.2

The effects of superimposed spraying BR on the contents of amino acid and protein in different periods"

Fig.3

Effects of superimposed spraying of BR on NO3- contents in different periods"

Fig.4

Effects of superimposed spraying BR on the contents of reducing sugar and sucrose in different periods"

Table 9

Effects of superimposed spraying of BR on root yield, sugar contents and sugar yield of sugar beet in different periods"

处理
Treatment
块根产量(g/株)
Tuberous root yield
(g/plant)
含糖率(度)
Sugar content
(degree)
产糖量(g/株)
Sugar yield
(g/plant)
CK 210.69±6.21b 12.50±0.40b 26.35±1.62b
QZ 231.50±7.90a 17.10±0.90a 39.63±3.43a
ZH 211.10±7.50b 13.90±1.30b 29.41±3.79b
QH 237.20±8.90a 16.30±0.90a 38.72±3.59a
QZH 226.70±5.80a 17.60±0.30a 39.91±1.70a
[1] 沙红, 高燕, 董心久, 等. 缺素对甜菜幼苗生长和生理的影响. 中国糖料, 2021, 43(1):23-28.
[2] 张宇航, 王清发, 胡晓林, 等. 糖用甜菜品种品质比较试验结果分析. 东北农业科学, 2016, 41(1):47-49.
[3] 苏欣欣, 肖洋, 胡晓航, 等. 基于灰色关联度分析和主成分分析法评估糖用甜菜品种的适应性. 中国农学通报, 2021, 37(30):39-46.
doi: 10.11924/j.issn.1000-6850.casb2021-0269
[4] 刘奇, 王婧朏, 卢秉福, 等. 黑龙江省制糖企业甜菜种植与收购调查分析. 中国糖料, 2020, 42(1):71-76.
[5] 李燕, 卢楠. 土地盐碱化成因及整治对策研究. 河南农业, 2021(8):61-62.
[6] 殷厚民, 胡建, 王青青, 等. 松嫩平原西部盐碱土旱作改良研究进展与展望. 土壤通报, 2017, 48(1):236-242.
[7] 孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 2017, 53(3):470-476.
[8] 赵颖, 魏小红, 赫亚龙, 等. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响. 草业学报, 2019, 28(2):156-167.
doi: 10.11686/cyxb2018181
[9] 于兆友, 闫海冰, 张慧芳, 等. 不同盐分胁迫对皂荚种子萌发及幼苗生理特征的影响. 东北农业大学学报, 2020, 51(10):28-35.
[10] 蔡琪琪, 王堽, 董寅壮. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响. 作物杂志, 2022(1):130-136.
[11] 黄春燕, 苏文斌, 郭晓霞, 等. 15个甜菜品种对盐碱胁迫的生理响应及耐盐碱性评价. 北方农业学报, 2020, 48(4):1-9.
doi: 10.12190/j.issn.2096-1197.2020.04.01
[12] 阿不都卡地尔·库尔班, 郑峰, 潘竟海, 等. 深松深度对甜菜生长发育及产量和产糖量的调控. 干旱地区农业研究, 2021, 39(5):178-185.
[13] Barket A. Practical applications of brassinosteroids in horticulture-Some field perspectives. Scientia Horticulturae, 2017, 225:15-21.
doi: 10.1016/j.scienta.2017.06.051
[14] 张露. 植物生长促进剂对玉米生长的影响及抗逆效应研究. 武汉:华中农业大学, 2017.
[15] 寇江涛. 外源EBR对NaCl胁迫下燕麦幼苗无机离子吸收、运输和分配的影响. 生态学杂志, 2020, 39(3):855-864.
[16] 聂文婧, 王硕硕, 荆鑫, 等. 外源表油菜素内酯对NaHCO3胁迫下黄瓜幼苗生长及氧化还原平衡的影响. 应用生态学报, 2018, 29(3):899-908.
doi: 10.13287/j.1001-9332.201803.024
[17] 杨敏文. 快速测定植物叶片叶绿素含量方法的探讨. 光谱实验室, 2002(4):478-481.
[18] 周畅, 周浓, 刘亚. 比色法测定海产品中甜菜碱含量的方法研究. 广东农业科学, 2013, 40(19):98-100.
[19] 涂云飞. 茚三酮法测定茶叶游离氨基酸总量研究. 现代农业科技, 2018(14):235,238.
[20] 杨静, 白冰, 王宁, 等. 考马斯亮蓝法对烟草薄片涂布液中蛋白质含量的测定. 湖北农业科学, 2017, 56(5):946-947,950.
[21] 曹秀云, 谢茜. 如何利用紫外分光光度法测定水中硝酸根离子. 硅谷, 2014, 7(5):72-73.
[22] 赵凯, 许鹏举, 谷广烨. 3,5-二硝基水杨酸比色法测定还原糖含量的研究. 食品科学, 2008, 29(8):534-536.
[23] 肖世远. 间苯二酚光度法测定蔗糖的适宜条件. 四川师范学院学报(自然科学版), 1998(3):57-59.
[24] 刘月月. 苏打盐碱胁迫对不同秧龄水稻氮代谢机制及产量的影响. 长春:吉林农业大学, 2018.
[25] 白健慧. 燕麦对盐碱胁迫的生理响应机制研究. 呼和浩特:内蒙古农业大学, 2016.
[26] 李志, 薛姣, 耿贵, 等. 逆境胁迫下甜菜生理特性的研究进展. 中国农学通报, 2021, 37(24):39-47.
doi: 10.11924/j.issn.1000-6850.casb2021-0113
[27] 於丽华, 王宇光, 康杰, 等. 盐胁迫对甜菜植株显微结构影响的初步研究. 中国农学通报, 2018, 34(34):14-19.
doi: 10.11924/j.issn.1000-6850.casb18060090
[28] 刘丹. 外源BR对盐碱胁迫下甜菜生理特性及产量和品质的影响. 哈尔滨:东北农业大学, 2019.
[29] Rufty T W, Kerr P S, Huber S C. Characterization of diurnal changes in activities of enzymes involved in sucrose biosynthesis. Plant Physiology, 1983, 73(2):428-433.
doi: 10.1104/pp.73.2.428 pmid: 16663233
[30] Gao Z, Liang X G, Zhang L, et al. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Research, 2017, 211:1-9.
doi: 10.1016/j.fcr.2017.05.027
[31] 申雨肖, 姚晓芹, 张世豪, 等. 油菜素内酯对半夏品质及产量的影响. 北方园艺, 2021(16):116-122.
[32] 鲍锐. 表油菜素内酯对辣椒抗寒性及生长发育的影响. 长春:吉林农业大学, 2008.
[33] 李蒙, 束胜, 郭世荣, 等. 2,4-表油菜素内酯对樱桃番茄光合特性和果实品质的影响. 西北植物学报, 2015, 35(1):138-145.
[34] 刘新宇, 武沛然, 李彩凤, 等. 盐碱胁迫下施加生物炭和减少氮肥用量对甜菜光合特性的影响. 西北农林科技大学学报(自然科学版), 2021, 49(1):108-116,125.
[35] 冯瑞军, 伍国强. 甜菜耐盐性生理及其分子水平研究进展. 中国糖料, 2015, 37(6):60-65,70.
[36] 武沛然. 生物炭与氮肥配施对盐碱胁迫下甜菜生长及土壤特性的影响. 哈尔滨:东北农业大学, 2019.
[37] 孙兰菊. 海水培养对叶用甜菜形态和生理特性的影响. 青岛:中国科学院海洋研究所, 2000.
[38] 焦德志, 赵泽龙. 盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展. 江苏农业科学, 2019, 47(20):1-4.
[39] 刘洋, 李彩凤, 洪鑫, 等. 盐碱胁迫对甜菜氮代谢相关酶活性及产量和含糖率的影响. 核农学报, 2015, 29(2):397-404.
doi: 10.11869/j.issn.100-8551.2015.02.0397
[40] 邹春雷. 甜菜适应碱性盐胁迫的生理机制及其转录组分析. 哈尔滨:东北农业大学, 2019.
[41] 聂书明. 油菜素内酯外源施用与其受体过表达对番茄耐旱性和品质的影响. 杨凌:西北农林科技大学, 2018.
[1] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[2] Chen Jian, Qi Wen, Jiang Hailing, Qian Zhongcang. Effects of Broccoli Waste Composting on Seedling Quality and Yield of Rice [J]. Crops, 2023, 39(4): 136-143.
[3] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
[4] Le Lihong, Liu Kaili, Chen Zhongping, Wang Binqiang, Tang Zhou, Cheng Feihu, Zhang Kun. Effects of Application Time of N Fertilizer at Panicle Differentiation Stage on the Nitrogen Use Efficiencies, Yield and Quality of One-Season Indica-Japonica Hybrid Rice [J]. Crops, 2023, 39(4): 195-201.
[5] Li Qingfeng, Gao Jie, Peng Qiu. Genetic Diversity Analysis of Agronomic and Quality Characteristics of Amaranthus Resources in Guizhou Province [J]. Crops, 2023, 39(4): 60-64.
[6] Li Hongsheng, Li Shaoxiang, Yang Zhonghui, Yang Jiali, Liu Kun, Xiong Shian, Li Fuqian, Guo Hui, Yang Mujun. Comparison ofPhenotype and Marker Detection in Seed Purity of Thermo-Photo Sensitive Two-Line WheatHybrids [J]. Crops, 2023, 39(4): 71-76.
[7] Pan Wenjing, Sun Yanan, Gao Lusi, Qu Mengnan, Zhang Weiyao, Fu Chunxu, Jiang Shibo, Jiang Chengxi, Fu Yashu, Wang Jinxing. Comprehensive Evaluation of Agronomic Characteristics of Soybean Resources in China and Europe [J]. Crops, 2023, 39(4): 91-97.
[8] Wang Xiaochun, Gao Ting, Yang Weidi, Wang Chuan, Chen Caijin. Study on Embryogenic Callus Induction and Embryoid Differentiation of Alfalfa [J]. Crops, 2023, 39(4): 98-103.
[9] Wen Shenghui, Yang Junwei, Wang Yang, Li Gongjian, Weng Jianfeng, Duan Canxing, Jia Xin, Wang Jianjun. Research Progress on Discovery of Resistance Genes and Molecular Breeding Utilization of Fungal Diseases in Maize [J]. Crops, 2023, 39(3): 1-11.
[10] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[11] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[12] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[13] Wang Shuoli, Ding Songshuang, Wang Ronghao, Li Linlin, Wu Chuang, Wang Jian, Shi Xiangdong. Difference and Correlation Analysis of Mineral Element Contents and Sensory Qualities between Yunnan Province of China and Nicaragua Cigar Tobacco Leaves [J]. Crops, 2023, 39(3): 139-147.
[14] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[15] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!