Crops ›› 2023, Vol. 39 ›› Issue (4): 182-187.doi: 10.16035/j.issn.1001-7283.2023.04.026

Previous Articles     Next Articles

Effects of Grafting on Interspecific Hybridization Compatibility of Potato and Its Physiological Regulation Mechanism

Zhai Xinna(), Yang Jiawei, Xu Chunjiang, Qi Lipan, Tian Zaimin, Feng Yan(), Yin Jiang, Gong Xuechen   

  1. Hebei North University, Zhangjiakou 075000, Hebei, China
  • Received:2022-04-10 Revised:2022-05-30 Online:2023-08-15 Published:2023-08-15

Abstract:

In order to cultivate excellent new germplasms of distant hybridization between tetraploid potato cultivated varieties and diploid wild varieties, tetraploid cultivated varieties (Jizhangshu 8 and Jizhangshu 12) were used as female parents and diploid wild varieties (Z1703 and Z1701) were used as male parents, the effects of pre grafting on interspecific hybridization compatibility and endogenous hormones on fruit setting rate of potato were analyzed. The results showed that the parents were pregrafted, and Jizhangshu 8 and Jizhangshu 12 were crossed with diploid wild species, respectively. After hybridization, the fruit setting rate and single fruit setting rate of each combination were improved compared with the control, the fruit setting rate of Z1703 increased by 39.19%, the number of single fruit increased by 0.13, broke through 0 seeds, and obtained the offspring of distant hybridization between cultivated and wild species. High content of GA3 and IAA were conducive to fruit setting, while high content of ABA inhibits fruit setting. Low content of ZR promotes fruit setting 2-4d after pollination, and high content of ZR promotes fruit setting in the later stage. The correlation coefficient between GA3 content and fruit setting rate was as high as 0.922 six days after pollination. The results showed that potato pre grafting could improve the fruit setting rate and promote interspecific hybridization compatibility, and endogenous hormones could regulate the fruit setting rate.

Key words: Potato, Grafting, Affinity, Physiological mechanism

Fig.1

Fruit setting of different hybrid combinations 20 days after pollination (a) G8×Z1703 control, (b) G8×Z1703 grafting; (c) G8×Z1701 control, (d) G8×Z1701 grafting"

Table 1

Effects of parental pre grafting on fruit setting rate of various inter hybrid combinations"

母本
Female
parent
父本
Male
parent
处理
Treatment
授粉花朵数
Number of
pollinated flowers
坐果数
Fruit setting
number
坐果率
Fruit setting
rate (%)
实生籽数
Number of
seeds
单果结实数
Single fruit real
number
G8 Z1703 对照 191 13 6.81 0 0.00
嫁接 100 46 46.00 6 0.13
G8 Z1701 对照 188 36 19.15 12 0.33
嫁接 112 7 6.25 1 0.14
G12 Z1703 对照 265 27 10.19 9 0.33
嫁接 108 24 22.22 6 0.25
G12 Z1701 对照 160 10 6.25 2 0.20
嫁接 154 6 3.90 0 0.00

Fig.2

Content changes of endogenous hormone GA3 in different interspecific hybrid combinations After the content of the same hormone in the same hybrid combination, different letters represent significant differences (P < 0.05), the same below"

Fig.3

Content changes of endogenous hormone ZR in different interspecific hybrid combinations"

Fig.4

Content changes of endogenous hormone IAA in different interspecific hybrid combinations"

Fig.5

Content changes of endogenous hormone ABA in different interspecific hybrid combinations"

Table 2

Correlation analysis between endogenous hormone content and fruit setting rate"

相关系数
Correlation coefficient
坐果率Fruit setting rate
GA3 ZR IAA ABA
现蕾期Budding stage 0.816* -0.705 0.457 -0.349
开花期Flowering stage -0.313 0.086 0.365 -0.302
授粉后2d Two days after pollination -0.236 0.306 -0.124 -0.199
授粉后4d Four days after pollination 0.567 -0.815* 0.660 -0.670
授粉后6d Six days after pollination 0.922** 0.477 0.487 -0.470
[1] 张艳萍. 引进秘鲁马铃薯种质资源的评价与利用. 杨凌:西北农林科技大学, 2014.
[2] 邸宏, 陈伊里, 金黎平. 中国马铃薯部分栽培品种遗传多样性的AFLP分析. 园艺学报, 2006, 33(6):1349-1352.
[3] 刘喜才, 张丽娟, 孙邦升, 等. 马铃薯种质资源研究现状与发展对策. 中国马铃薯, 2007(1):39-41.
[4] 段绍光. 马铃薯种质资源遗传多样性评价和重要性状的遗传分析. 北京: 中国农业科学院, 2017.
[5] Zeka D, Sedlák P, Sedláková V, et al. Phenotype and molecular diversity evaluation of some wild 2n Solanum species (super series Rotata). Chilean Journal of Agricultural Research, 2015, 75(2):356-361.
[6] 王成玉, 马贵龄. 枸杞和辣椒、茄子的嫁接杂交方法. 中国专利:101904266B. 2013.
[7] Bomfim N, Nassar N M A. Development of cassava periclinal chimera may boost production. Genetics & Molecular Research, 2014, 13(1):819-830.
[8] 祁利潘, 李越, 冯琰, 等. 嫁接对马铃薯种间杂交亲和性的评价. 分子植物育种, 2022, 20(2):486-493.
[9] 岳川, 曾建明, 章志芳, 等. 茶树中植物激素研究进展. 茶叶科学, 2012, 32(5):382-392.
[10] 黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学:生命科学, 2019, 49(10):1227-1281.
[11] 王珍华. 离体培养大岩桐花被切块花芽分化过程中开花相关基因表达及内源激素的定量分析. 杭州:杭州师范大学, 2012.
[12] 马佩勇, 贾赵东, 边小峰, 等. 不同砧木与嫁接方式对甘薯开花结实的影响. 浙江农业学报, 2014, 26(6):1425-1430.
[13] 薛金燕, 刘益勇, 吴隽香, 等. 栽培茄(Solanum melongena L.) 与喀西茄(Solanum khasianum C.B.Clarke)F1杂交种的获得与鉴定. 中国蔬菜, 2020(10):62-67.
[14] Goldschmidt E.E. Plant garafting:new mechanisms,evolutionary implications. Front Plant, 2014, 5(5):727.
[15] Tsipouridis C, Thomidis T. Effect of 14 peach rootstocks on the yield, fruit quality, mortality, girth expansion and resistance to frost damages of May Crest peach variety and their susceptibility on Phytophthora citrophthora. Scientia Horticultural, 2005, 103 (4):421-428.
[16] 葛晓宁, 钟秋平, 罗帅, 等. 外源GA3对油茶花器官内源激素与坐果率的影响. 林业科学研究, 2020, 33(1):162-170.
[17] Fukuda H, Kobayashi H. Dynamic organization of the cytoskeleton during tracheary-element differentiation. Development Growth Differentiation, 1989, 31(1):9-16.
doi: 10.1111/dgd.1989.31.issue-1
[18] 郭宇, 高美玲, 刘秀杰, 等. 西瓜种子不同发育时期内源激素含量变化. 基因组学与应用生物学, 2020, 39(9):4154-4161.
[19] 董倩倩, 龚桂芝, 彭祝春. 柑橘采前落果与果实不同部位内源激素含量关系分析. 植物生理学报, 2018, 54(10):1569-1575.
[1] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
[2] Ding Kaixin, Wang Lichun, Tian Guokui, Wang Haiyan, Li Fengyun, Pan Yang, Pang Ze, Shan Ying. Review on the Response Reasearch of Potato Growth and PhysiologicalCharacteristics to Water Stress [J]. Crops, 2023, 39(4): 16-21.
[3] Lou Shubao, Yang Mengping, Xing Jinyue, Zhai Lingxia, Wang Hui, Liu Chunsheng, Wang Lichun, Song Jiling. Molecular Marker-Assisted Screening of Potato Germplasm Resources for Virus Resistance [J]. Crops, 2023, 39(4): 65-70.
[4] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
[5] Jia Zhengrong, Hao Jiali, Hao Yanfang, Bai Wenbin, Zhang Jianhua, Guo Ruifeng, Liu Yong. Effects of Four Bacillus Species on Yield and Quality of Sweet Potato at Different Stages [J]. Crops, 2023, 39(1): 170-175.
[6] Liu Sujun, Meng Meilian, Suriguga . Research on the Effects of Gene Expression in Sugar Metabolism Pathway of Potato by Drought Stress and Rehydration [J]. Crops, 2023, 39(1): 38-45.
[7] Wang Xueru, Chen Haifei, Zhang Zhenhua. Physiological Mechanism of Nitrate Mitigation of Ammonium Toxicity in Rape [J]. Crops, 2022, 38(6): 124-131.
[8] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[9] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[10] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[11] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[12] Chen Yuzhen, Tang Guangbin, Ma Xianxin, Tian Guiyun, Yu Hongxin, Luo Yingluo, Fan Mingshou, Jia Liguo. Four Major Regulatory Pathways of Potato Tuber Development [J]. Crops, 2022, 38(4): 9-13.
[13] Liu Ju, Li Guangcun, Duan Shaoguang, Hu Jun, Jian Yinqiao, Liu Jiangang, Jin Liping, Xu Jianfei. The Effects of Different Night Temperature Treatments on in vitro Tuberization and Related-Genes Expression in Potato [J]. Crops, 2022, 38(3): 92-98.
[14] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[15] Liu Yajun, Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo, Chu Fengli. Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field [J]. Crops, 2021, 37(6): 122-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!