Crops ›› 2023, Vol. 39 ›› Issue (5): 30-36.doi: 10.16035/j.issn.1001-7283.2023.05.005

Previous Articles     Next Articles

Evaluation on Waterlogging Resistance of Different Wheat Varieties (Lines) at Jointing Stage

Song Guicheng(), Yu Guihong, Zhang Peng, Ma Hongxiang   

  1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2022-05-06 Revised:2022-06-14 Online:2023-10-15 Published:2023-10-16

Abstract:

In order to evaluate the tolerance to waterlogging of wheat at jointing stage, 34 varieties (lines) were used as experimental materials, two treatments of waterlogging and conventional cultivation were set, the yield, 1000-grain weight and grain diameter were measured, and the comprehensive evaluation of the materials' resistance was carried out by correlation analysis, factor analysis and comprehensive score. The results showed that waterlogging for 14 days resulted in a significant decrease in yield, 1000-grain weight and grain diameter. The grain diameter was significantly correlated with 1000-grain weight, and the decrease of 1000-grain weight and grain diameter was main factors of yield decrease. Stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), harmonic mean (HM), mean relative performance (MRP), relative productivity (RP) were significantly positive with the mean grain yield of genotype under normal condition (Yp) and mean grain yield of genotype under stress condition (Ys), which were suitable for screening potential genotypes under waterlogging stress and normal environment. The stress susceptibility index (SSI), waterlogging tolerance index (WTI), stress tolerance (TOL) were significantly negatively correlated with Ys, which were suitable for screening varieties with high yield potential under waterlogging stress. Factor 1 mainly explained GMP, HM, MP, WTI and RP, reflecting the yield characteristics, and factor 2 mainly explained SSI, Tol and STI, reflecting the waterlogging resistance characteristics. The proportion of GMP, HM, MP, STI, WTI and RP were all above 0.85, indicating a high degree of interpretation, which was suitable for primary screening of moisture resistance of varieties (lines). The results showed that the comprehensive scores and STS values of Guohaomai 6, Yang 15-133, Yang 16-157, Yang mai 20, Huamai 1064, Emai 166, Huamai 1061, Annong 170, Ningmai 9, Huamai 1063 and Wanke 125 were higher than those of waterlogging tolerant control Yangmai 25. It could be seen that the varieties with comprehensive score above 0.30 or STS value above 4.00 was waterlogging tolerance varieties. Therefore, the comprehensive scores and STS values obtained from GMP, HM, MP, STI, WTI and RP could be used as indicators for screening resistant germplasm resources.

Key words: Wheat, Waterlogging tolerance, Factor analysis, Index screening

Table 1

The wheat varieties (lines) in this study and their sources"

来源Source 品种(系)Variety (line)
四川Sichuan 川麦42,蜀麦1610,绵麦56,绵麦1419,国豪麦5号,国豪麦6号,T61749
湖北Hubei 鄂麦166,鄂麦6030,鄂麦6046,鄂麦6087
河南Henan 信麦129,信麦176,信麦181,郑麦1354
安徽Anhui 安农170,皖科125,皖麦616,皖西麦7号
江苏南京Nanjing, Jiangsu 华麦1061,华麦1062,华麦1063,华麦1064,宁麦1624,宁麦9号
江苏里下河Lixiahe, Jiangsu 扬11品19,扬15-133,扬16-157,扬16品10,扬辐麦5054,扬辐麦5059,扬辐麦6246,扬麦25,扬麦20

Table 2

Variance analysis for grain traits in cultivars (lines) under waterlogging and normal condition"

变异来源
Source
自由度
df
均方MS
籽粒产量
Grain
yield
千粒重
1000-grain
weight
粒径
Grain
diameter
品种(系)Variety (line) 33 0.03* 56.71* 0.07*
处理Treatment 1 1.14* 1184.91* 0.94*
区组Group 2 0.01 0.44 0.001
品种(系)×处理
Variety (line)×treatment
33 0.01* 10.71* 0.01*
区组×处理Group×treatment 2 0.02 59.01* 0.10*

Fig.1

Comparison of each treatment grain and analysis of correlation between 1000-grain weight and grain diameter"

Table 3

Correlation analysis among the indexes"

指标Index Ys Yp STI SSI GMP MP WTI TOL HM MRP RP
Ys 1.00
Yp 0.37* 1.00
STI 0.91** 0.73** 1.00
SSI -0.77** 0.30 -0.44** 1.00
GMP 0.91** 0.73** 0.99** -0.44** 1.00
MP 0.88** 0.77** 0.99** -0.38** 0.99** 1.00
WTI -0.77** -0.30 0.44** -1.00** 0.44** 0.38** 1.00
TOL -0.72** 0.38* -0.36* -0.99** -0.36** -0.29 -0.99** 1.00
HM 0.93** 0.68** 0.99** -0.49** 0.99** 0.99** 0.49** -0.42** 1.00
MRP 0.90** 0.74** 0.99** -0.43** 1.00** 0.99** 0.43** -0.34** 0.99** 1.00
RP 0.88** 0.38* 0.83** -0.65** 0.83** 0.80** 0.65** -0.59** 0.85** 0.99** 1.00

Table 4

Factor loading of indexes and the variation accounted for by each eigenvector"

指标
Index
因子载荷Factor loading 共同度
Communality
因子1 FA1 因子2 FA2
GMP 0.95 0.32 0.97
HM 0.96 0.26 0.86
MP 0.92 0.38 0.96
MRP 0.74 0.34 0.72
SSI -0.70 0.71 0.79
WTI 0.94 0.32 0.92
TOL -0.64 0.77 0.75
RP 0.91 -0.05 0.94
STI 0.70 -0.71 0.90
变异Variance (%) 74.11 23.74
累计变异
Cumulative variance (%)
74.11 97.85

Table 5

The top 18 varieties (lines) and scores based on GMP, HM, MP, STI, WTI, and RP"

序号Number GMP HM MP STI WTI RP
1 国豪麦6号(1.88) 国豪麦6号 (1.87) 国豪麦6号 (1.89) 国豪麦6号 (2.00) 扬麦20 (1.42) 国豪麦6号 (2.48)
2 华麦1064 (1.70) 扬15-133 (1.69) 华麦1064 (1.72) 华麦1064 (1.78) 华麦1061 (1.24) 扬16-157 (1.75)
3 扬15-133 (1.70) 华麦1064 (1.67) 扬15-133 (1.70) 扬15-133 (1.78) 扬11品19 (1.17) 扬15-133 (1.69)
4 扬16-157 (1.38) 扬16-157 (1.38) 鄂麦166 (1.37) 扬16-157 (1.42) 川麦42 (1.13) 华麦1064 (1.64)
5 鄂麦166 (1.37) 鄂麦166 (1.38) 扬16-157 (1.37) 鄂麦166 (1.41) 信麦129 (1.06) 信麦129 (0.94)
6 扬麦20 (1.22) 扬麦20 (1.24) 扬麦20 (1.20) 扬麦20 (1.25) 扬16-157 (0.84) 宁麦9号 (0.87)
7 宁麦9号 (1.05) 宁麦9号 (1.04) 宁麦9号 (1.06) 宁麦9号 (1.06) 国豪麦6号 (0.80) 华麦1063 (0.77)
8 华麦1061 (0.97) 华麦1061 (0.99) 华麦1061 (0.94) 华麦1061 (0.97) 扬15-133 (0.79) 皖科125 (0.77)
9 安农170 (0.91) 安农170 (0.93) 安农170 (0.89) 安农170 (0.91) 扬麦25 (0.79) 扬11品19 (0.70)
10 皖科125 (0.90) 皖科125 (0.90) 皖科125 (0.89) 皖科125 (0.89) 鄂麦166 (0.71) 川麦42 (0.65)
11 华麦1063 (0.72) 华麦1063 (0.74) 华麦1063 (0.70) 华麦1063 (0.70) 安农170 (0.68) 扬麦25 (0.61)
12 扬16品10 (0.50) 鄂麦6046 (0.44) 扬16品10 (0.63) 扬16品10 (0.47) 鄂麦6030 (0.63) 扬麦20 (0.58)
13 鄂麦6046 (0.45) 扬16品10 (0.39) 鄂麦6046 (0.46) 鄂麦6046 (0.42) 华麦1063 (0.47) 鄂麦6046 (0.43)
14 扬辐麦5054 (0.36) 扬麦25 (0.31) 扬辐麦5054 (0.44) 扬辐麦5054 (0.32) 鄂麦6087 (0.39) 鄂麦166 (0.35)
15 扬辐麦6246 (0.33) 扬辐麦5059 (0.30) 扬辐麦6246 (0.37) 扬辐麦6246 (0.29) 皖麦616 (0.27) 华麦1061 (0.32)
16 扬辐麦5059 (0.28) 扬辐麦6246 (0.29) 扬辐麦5059 (0.25) 扬辐麦5059 (0.24) 扬辐麦5059 (0.26) 鄂麦6087 (0.26)
17 扬麦25 (0.27) 扬辐麦5054 (0.29) 扬麦25 (0.23) 扬麦25 (0.23) 皖科125 (0.23) 扬16品10 (0.20)
18 鄂麦6087 (0.10) 鄂麦6087 (0.13) 鄂麦6087 (0.06) 鄂麦6087 (0.06) 宁麦1624 (0.21) 扬辐麦6246 (0.13)

Table 6

The factor comprehensive scores and STS"

排序
Ranking
因子分析综合得分
Factor comprehensive score
STS
1 国豪麦6号 (1.60) 国豪麦6号 (12.48)
2 扬15-133 (1.39) 扬15-133 (10.90)
3 华麦1064 (1.35) 扬16-157 (9.80)
4 扬16-157 (1.18) 扬麦20 (9.73)
5 鄂麦166 (1.02) 华麦1064 (9.02)
6 扬麦20 (0.98) 鄂麦166 (7.99)
7 宁麦9号 (0.82) 华麦1061 (7.90)
8 华麦1061 (0.77) 安农170 (5.72)
9 皖科125 (0.70) 宁麦9号 (5.47)
10 安农170 (0.67) 华麦1063 (5.06)
11 华麦1063 (0.60) 皖科125 (5.00)
12 鄂麦6046 (0.34) 扬麦25 (4.05)
13 扬16品10 (0.29) 信麦129 (3.19)
14 扬麦25 (0.29) 扬11品19 (1.91)
15 扬辐麦6246 (0.20) 川麦42 (1.83)
16 扬辐麦5054 (0.18) 鄂麦6087 (1.82)
17 扬辐麦5059 (0.14) 鄂麦6046 (1.40)
18 鄂麦6087 (0.11) 扬辐麦5059 (1.30)
19 宁麦1624 (0.01) 宁麦1624 (0.64)
20 信麦129 (-0.01) 信麦176 (-0.55)
21 信麦176 (-0.09) 扬辐麦6246 (-0.56)
22 T61749 (-0.15) 扬辐麦5054 (-1.81)
23 川麦42 (-0.25) 扬16品10 (-1.99)
24 扬11品19 (-0.26) T61749 (-2.15)
25 郑麦1354 (-0.41) 郑麦1354 (-4.03)
26 国豪麦5号 (-0.50) 皖麦616 (-4.28)
27 绵麦56 (-0.69) 鄂麦6030 (-5.15)
28 皖科616 (-0.83) 国豪麦5号 (-5.32)
29 华麦1062 (-1.03) 信麦181 (-8.90)
30 鄂麦6030 (-1.12) 绵麦56 (-9.94)
31 蜀麦1610 (-1.30) 蜀麦1610 (-10.27)
32 皖西麦7号 (-1.35) 华麦1062 (-11.48)
33 信麦181 (-1.38) 皖西麦7号 (-13.94)
34 绵麦1419 (-1.56) 绵麦1419 (-16.22)
[1] Wollenweber B, Porter J R, Schellberg J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science, 2003, 189(3):142-150.
doi: 10.1046/j.1439-037X.2003.00025.x
[2] Wang X, Huang M, Zhou Q, et al. Physiological and proteomic mechanisms of waterlogging priming to improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environmental and Experimental Botany, 2016, 132(9):175-182.
doi: 10.1016/j.envexpbot.2016.09.003
[3] Yu M, Mao S, Chen G, et al. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. Journal of Integrative Agriculture, 2014, 13(1):31-39.
doi: 10.1016/S2095-3119(13)60354-8
[4] 宋桂成, 史高玲, 张平平, 等. 拔节期渍水对小麦籽粒品质相关性状的影响. 核农学报, 2021, 35(1):238-244.
doi: 10.11869/j.issn.100-8551.2021.01.0238
[5] 马尚宇, 王艳艳, 黄正来, 等. 渍水对小麦生长的影响及耐渍栽培技术研究进展. 麦类作物学报, 2019, 39(7):835-843.
[6] 佟汉文, 刘易科, 朱展望, 等. 作物耐渍鉴定与评价方法的研究进展. 作物杂志, 2015(6):10-15.
[7] Poysa V W. The genetic control of low temperature, ice- encasement, and flooding tolerances by chromosomes 5A, 5B, and 5D in wheat. Cereal Research Communication, 1984, 36(3):135-141.
doi: 10.1556/CRC.36.2008.1.14
[8] 曹旸, 蔡士宾. 小麦品种资源的早熟性鉴定初报. 作物品种资源, 1984(3):26-29,48.
[9] Malik A I, Colmer T D, Lambers H, et al. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging. Functional Plant Biology, 2001, 28(11):1121-1131.
doi: 10.1071/PP01089
[10] Boru G, Ginkel M, Kronstad W E, et al. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001, 117 (2):91-98.
doi: 10.1023/A:1003929803920
[11] Li C, Jiang D, Wollenweber B, et al. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Science, 2011, 180(10):672-678.
doi: 10.1016/j.plantsci.2011.01.009
[12] Hayashi T, Yoshida T, Fujii K, et al. Maintained root length density contributes to the waterlogging tolerance in common wheat (Triticum aestivum L.). Field Crops Research, 2013, 152 (3):27-35.
doi: 10.1016/j.fcr.2013.03.020
[13] Ghobadi M E, Ghobadi M, Zebarjadi A. Effect of waterlogging at different growth stages on some morphological traits of wheat varieties. International Journal of Biometeorolgy, 2017, 61(4):635-645.
[14] Wu X, Tang Y, Li C, et al. Individual and combined effects of soil waterlogging and compaction on physiological characteristics of wheat in southwestern China. Field Crops Research, 2018, 215 (10):163-172.
doi: 10.1016/j.fcr.2017.10.016
[15] Setter T L, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat,barley and oats. Plant and Soil, 2003, 253(1):1-34.
doi: 10.1023/A:1024573305997
[16] Pampana S, Masoni A, Arduini I. Grain yield of durum wheat as affected by waterlogging at tillering. Cereal Research Communications, 2016, 44(4):706-716.
doi: 10.1556/0806.44.2016.026
[17] Arguello M N, Esten Mason R, Roberts T L, et al. Performance of soft red winter wheat subjected to field soil waterlogging: grain yield and yield compoments. Field Crops Research, 2016, 194(4):57-64.
doi: 10.1016/j.fcr.2016.04.040
[18] 刘杨, 石春林, 刘晓宇, 等. 渍害胁迫时期和持续时间对冬小麦产量及其构成因素的影响. 麦类作物学报, 2018, 38(2):239-245.
[19] Raman A, Verulkar S, Mandal N, et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 2012, 5(31):31-39.
doi: 10.1186/1939-8433-5-31
[20] Rosielle A A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Science, 1981, 21(6):943-946.
doi: 10.2135/cropsci1981.0011183X002100060033x
[21] Araki H, Hamada A, Hossain M, et al. Water logging at jointing and/or after anthesis in wheat induces early leaf senescence and impairs grain filling. Field Crops Research, 2012, 137:27-36.
doi: 10.1016/j.fcr.2012.09.006
[22] Ramirez V P, Kelly J D. Traits related to drought resistance in common bean. Euphytica, 1998, 99(2):127-136.
doi: 10.1023/A:1018353200015
[23] Singh G, Singh M K, Tyagi B S, et al. Germplasm characterization and selection indices in bread wheat for waterlogged soils in India. Indian Journal of Agricultural Science, 2017, 87(9):1139-1148.
[24] Abdolshahi R, Safarian A, Nazari M, et al. Screening drought- tolerant genotypes in bread wheat (Triticum aestivum L.) using different multivariate methods. Archives of Agronomy and Soil Science, 2013, 59(17):685-704.
doi: 10.1080/03650340.2012.667080
[25] 鲍晓鸣. 小麦耐湿性的鉴定时期及鉴定指标. 上海农业学报, 1997, 13(2):32-38.
[26] 宋桂成, 周淼平, 余桂红, 等. 小麦乙烯转录因子TaERF2响应湿害胁迫的表达分析. 核农学报, 2022, 36(5):876-884.
doi: 10.11869/j.issn.100-8551.2022.05.0876
[27] Li Q, Ding Q, Wang LX, et al. Effects of shading and waterlogging on the photosynthesis and yield performance of winter wheat in Jiangsu province, China. International Journal of Agriculture and Biology, 2019, 21(5):472-478.
[28] Wu X, Tang Y, Li C, et al. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Production Science, 2015, 18(3):284-294.
doi: 10.1626/pps.18.284
[29] Khodarahmpour Z, Choukan R, Bihamta M R, et al. Determination of the best heat stress tolerance indices in maize (Zea mays L.) inbred lines and hybrids under Khuzestan Province conditions. Journal of Agricultural Science and Technology, 2011, 13(1):111-121.
[30] Clarke J M, DePauw R M, Townley-Smith T F. Evaluation of methods for quantification of drought tolerance in wheat. Crop Science, 1992, 32(3):7228-7232.
[31] Fischer R A, Maurer R. Drought resistance in spring wheat cultivars. I grain yield responses. Australian Journal of Agricultural Research, 1978, 29(5):897-912.
doi: 10.1071/AR9780897
[1] Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123.
[2] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[3] Huang Jie, Ge Changbin, Wang Jun, Cao Yanyan, Qiao Jiliang, Liao Pingʼan, Song Danyang, Lu Wenying. Simulation Model of Relative Meteorological 1000-Grain Weight of Wheat of Luohe Based on Principal Component Regression [J]. Crops, 2023, 39(5): 212-218.
[4] Liu Shuhan, Chen Lei, Zhang Jianchao, Hu Gan, Sun Junyan, Liu Dongtao, Wang Junwei. Gene Differential Expression Analysis of TMS5 in the Fertility Conversion of Wheat BNS Sterile Line [J]. Crops, 2023, 39(5): 24-29.
[5] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[6] Ge Changbin, Qin Suyan, Qiao Jiliang, Wang Jun, Qi Shuangli, Lu Wenying, Zhang Zhenyong. Comparative Analysis of Agronomic Traits, Quality and Disease Evolution of Approved Wheat Varieties in Southern Henan and Southern Huai River in Jiangsu from 2001 to 2021 [J]. Crops, 2023, 39(5): 49-58.
[7] Yang Cheng, Zhang Deqi, Du Simeng, Zhang Lijia, Jin Haiyang, Li Ying, Shao Yunhui, Wang Hanfang, Fang Baoting, Li Xiangdong, Liu Meijun. Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro [J]. Crops, 2023, 39(5): 98-103.
[8] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[9] Song Xiao, Zhang Keke, Yue Ke, Huang Chenchen, Huang Shaomin, Sun Jianguo, Guo Tengfei, Guo Doudou, Zhang Shuiqing, Pei Minnan. Differences of Enzyme Activities and Bacterial Communities in Rhizosphere Soil of Wheat Varieties with Different Nitrogen Efficiency [J]. Crops, 2023, 39(4): 188-194.
[10] Fu Xiaoyi, Wang Hongguang, Liu Zhilian, Li Dongxiao, He Mingqi, Li Ruiqi. Effects of Water Stress on Growth of Different Wheat Varieties at Seedling Stage and Selection of Drought Resistant Varieties [J]. Crops, 2023, 39(4): 224-229.
[11] Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51.
[12] Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15.
[13] Li Hongsheng, Li Shaoxiang, Yang Zhonghui, Yang Jiali, Liu Kun, Xiong Shian, Li Fuqian, Guo Hui, Yang Mujun. Comparison ofPhenotype and Marker Detection in Seed Purity of Thermo-Photo Sensitive Two-Line WheatHybrids [J]. Crops, 2023, 39(4): 71-76.
[14] Zhao Pengpeng, Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong. Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat [J]. Crops, 2023, 39(4): 77-84.
[15] Li Haoran, Li Ruiqi, Li Yanming. Review of the Changes of Wheat Row Spacing Forms and the Affecting Factors in Haihe Plain [J]. Crops, 2023, 39(3): 12-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!