Crops ›› 2024, Vol. 40 ›› Issue (5): 255-262.doi: 10.16035/j.issn.1001-7283.2024.05.036

Previous Articles    

Optimization of Fermentation Conditions for the Biocontrol Streptomyces Strain PBSH9 against Potato Scab Disease

Song Yadi1,2(), Guo Ting1,2, Xiu Zhijun1,2, Wang Liwei1, Yang Chunfang1,2, Wang Shuhua3, Zhang Xiaoyu1()   

  1. 1College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010020, Inner Mongolia, China
    2Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia,China
    3Aohan Banner Agriculture and Animal Husbandry Bureau, Chifeng 024300, Inner Mongolia, China
  • Received:2023-05-04 Revised:2024-05-31 Online:2024-10-15 Published:2024-10-16

Abstract:

Using the fermentation broth bacterial quantity as the screening index, the single-factor method was used to screen the best carbon source, nitrogen source, inoculum amount, pH, temperature, and incubation duration for strain PBSH9. The findings indicated that the best material for strain PBSH9 development was wheat bran. When wheat bran was used to replace soluble starch in Gaoshi 1 medium with a concentration of 1%, the bacterial colony amount of strain PBSH9 in the fermentation broth was 104.3×109 CFU/mL, and the antibacterial rate was 60.3%. Soybean meal powder is most beneficial for the growth of strain PBSH9, When replacing potassium nitrate in Gaoshi 1 culture medium with 0.5% concentration of soybean meal powder, the maximum number of colonies and antibacterial rate were 123.7×109 CFU/mL and 55.6%, respectively. Inoculating a seed solution with a concentration of 1×108 CFU/mL by 4% ratio into Gaoshi 1 culture medium, the fermentation broth had the highest bacterial amount and antibacterial rate, with a colony amount of 144.6×109 CFU/mL and an antibacterial rate of 71.9%; strain PBSH9 in pH 6.0-7.0 had the strongest bacterial inhibition activity, 66.3% and 65.8%, respectively; the fermentation broth had the largest colony size and bacterial inhibition rate at 28 ℃, with a colony size of 101.6×1010 CFU/mL and 69.1% inhibition rate. When cultured in optimized fermentation medium for six days, the maximum bacterial amount and antibacterial rate (71.9%) were achieved.

Key words: Potato, Potato scab disease, Streptomyces, Biocontrol bacteria, Optimization of fermentation conditions

Fig.1

Colony forming unit and antibacterial rate of strain PBSH9 under different carbon sources Different lowercase letters indicate significant differences (P < 0.05), the same below."

Fig.2

Colony forming unit and antibacterial rate of strain PBSH9 at different wheat bran concentrations"

Fig.3

Colony forming unit and antibacterial rate of strain PBSH9 under different nitrogen sources"

Fig.4

Colony forming unit and antibacterial rate of strain PBSH9 at different soybean meal cake powder concentrations"

Fig.5

Colony forming unit and antibacterial rate of strain PBSH9 at different vaccination amounts"

Fig.6

Colony forming unit and antibacterial rate of strain PBSH9 at different pH values"

Fig.7

Colony forming unit and antibacterial rate of strain PBSH9 at different temperatures"

Fig.8

Colony forming unit and antibacterial rate of strain PBSH9 at different fermentation times"

[1] 生兆平, 许杰, 朱文婷, 等. 马铃薯疮痂病防治技术探讨. 中国果菜, 2023, 43(5):64-67.
[2] 王迎男, 高娃, 郜翻身, 等. 内蒙古马铃薯主产区基础地力及增产潜力研究. 植物营养与肥料学报, 2019, 25(8):1345-1353.
[3] Wanner L A. A survey of genetic variation in Streptomyces isolates causing potato common scab in the United States. Phytopathology, 2006, 96(12):1363-1371.
doi: 10.1094/PHYTO-96-1363 pmid: 18943669
[4] Leiminger J, Frank M, Wenk C, et al. Distribution and characterization of Streptomyces species causing potato common scab in Germany. Plant Pathology, 2013, 62(3):611-623.
[5] 黄勋, 刘霞, 邓琳梅, 等. 马铃薯疮痂病研究进展. 植物病理学报,(2024-06-05) [2024-08-15]. https://doi.org/10.13926/j.cnki.apps.001039.
[6] 马爽, 王腾, 王彦杰, 等. 马铃薯疮痂病发生因素与侵染机制研究进展. 黑龙江农业科学, 2021(5):120-124.
[7] 李拴曹, 李存玲. 马铃薯疮痂病的发生与防治. 陕西农业科学, 2016, 62(1):76-77.
[8] 赵红艳. 内蒙古地区马铃薯疮痂病生防菌的筛选鉴定及防效研究. 泰安:山东农业大学, 2018.
[9] 李爽, 杨美军, 张云, 等. 马铃薯疮痂病研究进展. 中国马铃薯, 2018, 32(4):240-248.
[10] 夏善勇, 盛万民. 我国马铃薯疮痂病及其防治研究进展. 植物保护, 2022, 48(1):7-16.
[11] 王敏, 吕和平, 高彦萍, 等. 微生物菌肥在马铃薯疮痂病防治上的应用效果. 甘肃农业科技, 2021, 52(10):27-31.
[12] 李兴龙, 李彦忠. 土传病害生物防治研究进展. 草业学报, 2015, 24(3):204-212.
doi: 10.11686/cyxb20150321
[13] St-onge R, Gadkar V J, Arseneault T, et al. The ability of Pseudomonas sp. LBUM 223 to produce phenazine-1- carboxylic acid affects the growth of Streptomyces scabies, the expression of thaxtomin biosynthesis genesand the biological control potential against common scab of potato. FEMS Microbiology Ecology, 2011, 75(1):173-183.
doi: 10.1111/j.1574-6941.2010.00992.x pmid: 21073487
[14] Agbessi S, Beauséjour J, Déry C, et al. Antagonistic properties of two recombinant strains of Streptomyces melanosporofaciens obtained by intraspecific protoplast fusion. Applied Microbiology & Biotechnology, 2003, 62(2/3):233-238.
[15] Hiltunen L H, Ojanperä T, Kortemaa H, et al. Interactions and biocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions. Journal of Applied Microbiology, 2009, 106(1):199-212.
doi: 10.1111/j.1365-2672.2008.03992.x pmid: 19054229
[16] 刘大群, Anderson N A, Kinkel L L. 拮抗链霉菌防治马铃薯疮痂病的大田试验研究(英文). 植物病理学报, 2000, 30(3):237-244.
[17] 陈志垚, 王鹏, 王微, 等. 马铃薯疮痂病菌Streptomyces scabies拮抗细菌的筛选及BKS104鉴定. 微生物学通报, 2021, 48 (11):4145-4155.
[18] 丁立孝, 杨增军. 防治烟草赤星病农用抗生素产生菌S-10菌株发酵条件的研究. 莱阳农学院学报, 1996(3):6-10.
[19] 王东昌. 链霉菌S-10菌株发酵条件的研究. 吉林农业大学学报, 2001, 23(1):35-39.
[20] Zhang X Y, Li C, Hao J J, et al. A novel Streptomyces sp. strain PBSH 9 for controlling potato common scab caused by Streptomyces galilaeus. Plant Disease, 2020, 104(7):1-52.
[21] 宋亚迪. 马铃薯疮痂病生防链霉菌可湿性粉剂研制. 呼和浩特:内蒙古农业大学, 2022.
[22] Raghavarao K, Ranganathan T, Karanth N. Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal, 2003, 13(2/3):127-135.
[23] 薛正莲, 王珊, 孙俊峰, 等. 链霉菌形态分化与次级代谢产物合成的研究进展. 微生物学报, 2021, 61(12):3870-3886.
[24] 姜云, 黄丽丽, 陈长卿. 一株拮抗番茄叶霉病菌的放线菌筛选、鉴定及发酵条件研究. 微生物学报, 2007, 47(4):622-627.
[25] 陈立梅, 徐文静, 刘文国. 玉米弯孢菌叶斑病拮抗放线菌BPS2发酵条件的初步探索. 玉米科学, 2006, 14(6):134-137.
[26] 段雅婕, 梅志刚, 孙德权, 等. 拮抗放线菌菌株FS-4发酵工艺筛选. 热带作物学报, 2020, 41(2):339-345.
doi: 10.3969/j.issn.1000-2561.2020.02.018
[27] 梁春浩, 臧超群, 安福涛, 等. 葡萄霜霉病菌拮抗放线菌PY-1发酵条件优化. 中国生物防治学报, 2015, 31(6):921-929.
doi: 10.16409/j.cnki.2095-039x.2015.06.015
[28] 孟庆芳, 张汀, 杨文香, 等. 拮抗链霉菌S23发酵条件的研究. 中国生物防治, 2002, 18(2):79-82.
[29] 郑东光, 周蕊, 李俊州, 等. 疮痂链霉菌许昌亚种SCY114发酵条件的研究. 河南农业大学学报, 2013, 47(1):55-60.
[30] 牛世全, 文娜, 韩建山, 等. 一株抗植病放线菌的发酵条件优化及活性产物研究. 西北师范大学学报(自然科学版), 2020, 56(1):69-77.
[31] 赵柏霞, 闫建芳, 刘秋, 等. 拮抗放线菌YH6的鉴定及发酵条件优化. 江苏农业科学, 2015, 43(9):180-183.
[1] Xiao Xiao, Zhong Kunquan, Tu Xiaoju, Yi Zhenxie. Effects of Low Temperature Acclimation Duration on Cold Tolerance Physiological Characteristics in Vegetable Sweet Potato Seedlings [J]. Crops, 2024, 40(5): 140-145.
[2] Li Yong, Yang Huanchun, Lin Chun, Zheng Lanyan, Yang Yi, Li Jingwen, Bai Guanglan, Pan Qinghua. Effects of Tuber Weight on Processing Quality of Different Starch Type Potatoes [J]. Crops, 2024, 40(5): 188-193.
[3] Huang Yanxia, Chen Genhui, Lin Jianfu, Guo Qimao, Huang Kangde, Silang Quncuo, Xie Lijun, Lin Zilong. Study of Highly Efficient Cultivation Technique of Inter Cropping Sweet Potato Longzi 9 in Tobacco Field [J]. Crops, 2024, 40(5): 228-234.
[4] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[5] Liu Yajun, Lu Yun, Wang Wenjing, Hu Qiguo, Chu Fengli, Li Zhijie. Effects of Organic Fertilizer and Soil Conditioner on the Growth and Development of Continuous Cropping Sweet Potato and Soil Fertility [J]. Crops, 2024, 40(3): 168-174.
[6] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[7] Lou Shubao, Yang Mengping, Xing Jinyue, Zhai Lingxia, Wang Hui, Liu Chunsheng, Wang Lichun, Song Jiling. Molecular Marker Screening of Potato Late Blight Resistant Gene R8 and Evaluation of Field Resistance [J]. Crops, 2024, 40(3): 247-251.
[8] Li Lu, Yang Dan, Wang Suhua, Wan Guoan, Jiang Wan, Li Shuju, Zhang Shuguang, Li Bing. Stability Analysis and Adaptability Evaluation of Potato Cultivars in Winner Paddy Field [J]. Crops, 2024, 40(3): 47-53.
[9] Du Qingfu, Shang Lili, Lü Jiahao, Zhang Ruiqing, Yao Jiangang, Qiu Pengfei, Zhao Jianwei, He Shaozhen. Effects of Different Light Intensity on Photosynthetic Characteristics and Flowering of Sweet Potato [J]. Crops, 2024, 40(2): 172-177.
[10] Li Sheng, Li Xiang, Zhu Meiru, Wang Xia, Li Haoyang, Tan Xinru, Wang Haiyan. Screening of Antagonistic Bacteria against Potato Bacterial Wilt and Study on Its Control Effect in Greenhouse [J]. Crops, 2024, 40(2): 242-248.
[11] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[12] Xiong Yuting, Zheng Luyao, Jia Wenqi, Li Man, Chen Jianing, Li Kuihua, Gao Yuliang. Isolation and Identification of Antagonistic Actinomycetes Strains against Fusarium Wilt of Cucumber [J]. Crops, 2023, 39(6): 261-269.
[13] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[14] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[15] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!