Crops ›› 2024, Vol. 40 ›› Issue (5): 188-193.doi: 10.16035/j.issn.1001-7283.2024.05.027

Previous Articles     Next Articles

Effects of Tuber Weight on Processing Quality of Different Starch Type Potatoes

Li Yong(), Yang Huanchun, Lin Chun, Zheng Lanyan, Yang Yi, Li Jingwen, Bai Guanglan, Pan Qinghua   

  1. College of Agriculture, Anshun University, Anshun 561000, Guizhou, China
  • Received:2023-08-30 Revised:2024-02-08 Online:2024-10-15 Published:2024-10-16

Abstract:

In order to investigate the effect of tuber weight on the processing quality of different starch type potatoes, high-starch varieties Kexin 27, Vilas and Annongshu 1 and low-starch varieties Holland 15 and Longyushu 1 were selected as experimental materials, and tuber weights were set at 25, 50, 100, 150 and 200 g. The processing quality indexes such as dry matter content, starch content and reducing sugar content of tubers with different weights were determined, and the differences of processing quality among tubers with different weights were analyzed. The results showed that the dry matter contents and starch contents of high- starch varieties Kexin 27, Vilas and Annongshu 1 increased with the tuber weight increasing from 25 to 150 g. The above indexes were no significant change at 150-200 g. When the tuber weight of Holland 15 and Longyushu 1 were 25-100 g, the dry matter content and starch content increased with the increase of tuber weight, and there was no significant change at 100-200 g. When the tuber weight of high-starch varieties (Kexin 27, Vilas and Annongshu 1) were 25-200 g, the reducing sugar content decreased with the tuber weight increasing. On the other hand, the lowering sugar concentration remained consistently at a high level when the tuber weight of the low-starch types (Holland 15 and Longyushu 1) were 25-200 g. In conclusion, high-starch potato varieties weighing 150-200 g could improve tuber quality.

Key words: Potato, Tuber weight, Dry matter content, Starch content, Reducing sugar content

Table 1

Variance analysis of dry matter content of potato tuber"

变异来源Source of variation 平方和SS 自由度df 均方MS FF-value
品种Variety 564.5573 4 141.1393 497.4370**
块茎重量Tuber weight 304.4293 4 76.1073 268.2350**
品种×块茎重量Variety×tuber weight 19.5333 16 1.2208 4.3030**
误差Error 14.1867 50 0.2837
总变异Total variation 902.7067 74

Table 2

The difference of processing quality of different starch potato tubers %"

品种Variety 干物质含量Dry matter content 淀粉含量Starch content (FW) 还原糖含量Reducing sugar content (FW)
克新27号Kexin 27 24.5±1.7a 17.9±1.6a 0.2±0.1c
维拉斯Vilas 24.6±2.9a 16.7±2.6b 0.1±0.1e
安农薯1号Annongshu 1 23.7±2.0b 16.5±1.9b 0.2±0.1d
荷兰15号Holland 15 17.8±2.3d 11.6±2.1d 0.2±0.0b
龙渝薯1号Longyushu 1 19.8±1.9c 13.3±1.5c 0.3±0.0a

Table 3

The difference of dry matter contents in different weight tubers of different starch type potatoes %"

块茎重量
Tuber weight (g)
克新27号
Kexin 27
维拉斯
Vilas
安农薯1号
Annongshu 1
荷兰15号
Holland 15
龙渝薯1号
Longyushu 1
25 22.1±0.2d 20.2±0.9d 20.2±0.8d 14.6±0.6c 17.2±0.3c
50 23.1±0.2c 22.8±0.8c 23.3±0.3c 15.9±0.1b 18.4±0.3b
100 25.1±0.3b 25.6±0.2b 24.2±0.3b 19.2±0.1a 20.7±0.3a
150 25.7±0.3a 27.4±0.8a 25.2±0.6a 20.0±0.2a 21.6±0.3a
200 26.4±0.6a 27.1±0.3a 25.5±0.6a 19.5±0.3a 21.4±0.9a

Table 4

Analysis of variance of starch content in potato tuber"

变异来源Source of variation 平方和SS 自由度df 均方MS FF-value
品种Variety 412.8125 4 103.2031 239.7100**
块茎重量Tuber weight 231.2912 4 57.8228 134.3050**
品种×块茎重量Variety×tuber weight 16.0275 16 1.0017 2.3270*
误差Error 21.5267 50 0.4305
总变异Total variation 681.6579 74

Table 5

The difference of starch contents in different weight tubers of different starch type potatoes %"

块茎重量
Tuber weight (g)
克新27号
Kexin 27
维拉斯
Vilas
安农薯1号
Annongshu 1
荷兰15号
Holland 15
龙渝薯1号
Longyushu 1
25 15.9±0.7c 13.1±0.9d 13.4±0.4d 8.5±0.4c 11.3±1.1b
50 16.5±0.4c 14.8±0.9c 15.9±0.8c 10.1±0.6b 12.3±0.5b
100 18.2±0.3b 17.6±0.5b 17.0±0.4bc 13.1±0.4a 14.0±0.2a
150 19.7±0.3a 19.1±1.3a 17.8±0.2a 13.2±1.0a 14.5±0.4a
200 19.1±0.2a 18.9±1.0ab 18.4±0.6a 13.2±0.5a 14.5±0.7a

Table 6

Variance analysis of reducing sugar content in potato tuber"

变异来源Source of variation 平方和SS 自由度df 均方MS FF-value
品种Variety 0.1878 4 0.0470 116.2160**
块茎重量Tuber weight 0.0804 4 0.0201 49.7390**
品种×块茎重量Variety×Tuber weight 0.0823 16 0.0051 12.7340**
误差Error 0.0202 50 0.0004
总变异Total error 0.3707 74

Table 7

The difference of reducing sugar content in different weight tubers of different starch type potatoes %"

块茎重量
Tuber weight (g)
克新27号
Kexin 27
维拉斯
Vilas
安农薯1号
Annongshu 1
荷兰15号
Holland 15
龙渝薯1号
Longyushu 1
25 0.280±0.020a 0.263±0.006a 0.207±0.015a 0.247±0.025a 0.270±0.040a
50 0.240±0.040b 0.143±0.007b 0.200±0.012a 0.240±0.010a 0.257±0.025a
100 0.180±0.030c 0.097±0.021c 0.180±0.010ab 0.240±0.006a 0.273±0.015a
150 0.160±0.010c 0.090±0.010c 0.153±0.006b 0.230±0.010a 0.280±0.040a
200 0.110±0.010d 0.080±0.011c 0.070±0.011c 0.223±0.027a 0.290±0.010a
[1] Bradshaw J E, Bonierbale M W. Handbook of Plant Breeding:Root and Tuber Crops. New York: Springer New York,2010:1-2.
[2] Singh J, Kaur L. Advances in Potato Chemistry and Technology. Amsterdam: Elsevier Academic Press, 2009(7):9-11.
[3] Singh J, Kaur L. Advances in Potato Chemistry and Technology. New York: Academic Press, 2009.
[4] 张慧慧, 曹娟云, 王秀康, 等. 几个马铃薯品种块茎品质在榆林地区的综合评价. 陕西农业科学, 2019, 65(12):72-75.
[5] 张翔宇, 李霄峰. 高淀粉马铃薯品种块茎大小与淀粉含量之间的关系. 中国马铃薯, 2006, 20(5):280-284.
[6] 赵萍, 巩慧玲, 赵瑛, 等. 不同品种马铃薯淀粉及其直链淀粉支链淀粉含量的测定. 兰州理工大学学报, 2004, 30(1):76-78.
[7] 陈娟, 贺锦红, 刘吉利, 等. 半干旱区不同种植模式对马铃薯淀粉形成及产量的影响. 作物杂志, 2020(3):169-176.
[8] 王秀康, 杜常亮, 邢金金, 等. 基于施肥量对马铃薯块茎品质影响的主成分分析. 分子植物育种, 2017, 15(5):2003-2008.
[9] 晋小军, 黄鹏, 温随良. 甘肃主要土壤的理化性质对马铃薯品质的影响. 甘肃农业大学学报, 1996, 31(3):257-262.
[10] 李佩华. 氮营养对秋马铃薯块茎发育中淀粉积累的影响. 西南农业学报, 2014, 27(6):2455-2459.
[11] 程瑶, 孙磊, 原琳, 等. 磷肥用量对马铃薯淀粉理化性质及产量的影响. 植物营养与肥料学报, 2021, 27(9):1603-1613.
[12] 石瑛, 王金明, 黄越, 等. 高淀粉马铃薯在钾处理下的淀粉含量及组分. 呼和浩特: 中国作物学会马铃薯专业委员会 2016.
[13] 张小静, 李雄, 陈富, 等. 影响马铃薯块茎品质性状的环境因子分析. 中国马铃薯, 2010, 24(6):366-369.
[14] Burton W G. The Potato. Harlow: Longman Scientific and Technical Press,1989.
[15] 马微, 尹娟. 不同灌水处理对马铃薯块茎品质及产量的影响. 宁夏工程技术, 2011, 10(3):232-235.
[16] 王星强, 康建宏, 柳强娟, 等. 高温胁迫对马铃薯淀粉含量及产量的影响. 农业科学研究, 2022, 43(4):8-14.
[17] 项洪涛, 冯乃杰, 王立志, 等. 3种植物生长调节剂对马铃薯产量和营养品质的调控中国马铃薯, 2015, 29(2):97-102.
[18] 季超. 贮藏温度对不同淀粉含量马铃薯品种加工品质的影响. 张家口: 河北北方学院 2020.
[19] 宋波涛, 谢从华, 柳俊, 等. 马铃薯sAGP基因表达对块茎淀粉和还原糖含量的影响. 中国农业科学, 2005, 38(7):1439-1446.
[20] 甘晓燕, 巩檑, 张丽, 等. 马铃薯块茎淀粉积累及相关酶活性的研究. 分子植物育种, 2017, 15(11):4625-4628.
[21] 何虎翼, 唐洲萍, 杨鑫, 等. 马铃薯淀粉合成与降解研究进展. 生物技术通报, 2019, 35(4):101-107.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0829
[22] 唐珂, 严彩虹, 朱博, 等. 马铃薯淀粉代谢相关基因及其顺式调控元件的分子研究进展. 农业生物技术学报, 2023, 31(4):833-843.
[23] 张永成, 田丰. 马铃薯试验研究方法. 北京: 中国农业科学技术出版社, 2007.
[24] 中华人民共和国国家标准局. 谷物籽粒粗淀粉测定法:NY/T 11-1985. 北京: 中国标准出版社,1985.
[25] 国家市场监督管理总局. 食品中还原糖的测定:GB/T 5009.7-2016. 北京: 中国标准出版社, 2016.
[26] 吴林科, 王收良, 王效瑜, 等. 马铃薯块茎大小与淀粉含量耦合研究. 内蒙古农业科技, 2011(3):54.
[27] 张翔宇, 李霄峰. 高淀粉马铃薯品种块茎大小与淀粉含量之间的关系. 中国马铃薯, 2006, 20(5):284-287.
[1] Xiao Xiao, Zhong Kunquan, Tu Xiaoju, Yi Zhenxie. Effects of Low Temperature Acclimation Duration on Cold Tolerance Physiological Characteristics in Vegetable Sweet Potato Seedlings [J]. Crops, 2024, 40(5): 140-145.
[2] Huang Yanxia, Chen Genhui, Lin Jianfu, Guo Qimao, Huang Kangde, Silang Quncuo, Xie Lijun, Lin Zilong. Study of Highly Efficient Cultivation Technique of Inter Cropping Sweet Potato Longzi 9 in Tobacco Field [J]. Crops, 2024, 40(5): 228-234.
[3] Song Yadi, Guo Ting, Xiu Zhijun, Wang Liwei, Yang Chunfang, Wang Shuhua, Zhang Xiaoyu. Optimization of Fermentation Conditions for the Biocontrol Streptomyces Strain PBSH9 against Potato Scab Disease [J]. Crops, 2024, 40(5): 255-262.
[4] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[5] Liu Yajun, Lu Yun, Wang Wenjing, Hu Qiguo, Chu Fengli, Li Zhijie. Effects of Organic Fertilizer and Soil Conditioner on the Growth and Development of Continuous Cropping Sweet Potato and Soil Fertility [J]. Crops, 2024, 40(3): 168-174.
[6] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[7] Lou Shubao, Yang Mengping, Xing Jinyue, Zhai Lingxia, Wang Hui, Liu Chunsheng, Wang Lichun, Song Jiling. Molecular Marker Screening of Potato Late Blight Resistant Gene R8 and Evaluation of Field Resistance [J]. Crops, 2024, 40(3): 247-251.
[8] Li Lu, Yang Dan, Wang Suhua, Wan Guoan, Jiang Wan, Li Shuju, Zhang Shuguang, Li Bing. Stability Analysis and Adaptability Evaluation of Potato Cultivars in Winner Paddy Field [J]. Crops, 2024, 40(3): 47-53.
[9] Du Qingfu, Shang Lili, Lü Jiahao, Zhang Ruiqing, Yao Jiangang, Qiu Pengfei, Zhao Jianwei, He Shaozhen. Effects of Different Light Intensity on Photosynthetic Characteristics and Flowering of Sweet Potato [J]. Crops, 2024, 40(2): 172-177.
[10] Li Sheng, Li Xiang, Zhu Meiru, Wang Xia, Li Haoyang, Tan Xinru, Wang Haiyan. Screening of Antagonistic Bacteria against Potato Bacterial Wilt and Study on Its Control Effect in Greenhouse [J]. Crops, 2024, 40(2): 242-248.
[11] Xu Shihao, Zhao Chunbo, Huangfu Liyun, Fan Xintong, Chen Shanshan, Han Zhongcai, Han Yuzhu. Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato [J]. Crops, 2023, 39(6): 202-208.
[12] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[13] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
[14] Ding Kaixin, Wang Lichun, Tian Guokui, Wang Haiyan, Li Fengyun, Pan Yang, Pang Ze, Shan Ying. Review on the Response Reasearch of Potato Growth and PhysiologicalCharacteristics to Water Stress [J]. Crops, 2023, 39(4): 16-21.
[15] Zhai Xinna, Yang Jiawei, Xu Chunjiang, Qi Lipan, Tian Zaimin, Feng Yan, Yin Jiang, Gong Xuechen. Effects of Grafting on Interspecific Hybridization Compatibility of Potato and Its Physiological Regulation Mechanism [J]. Crops, 2023, 39(4): 182-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!