Crops ›› 2023, Vol. 39 ›› Issue (6): 202-208.doi: 10.16035/j.issn.1001-7283.2023.06.028

Previous Articles     Next Articles

Effects of Different Potassium Sources on Potassium Accumulation, Transport and Yield Components in Potato

Xu Shihao1(), Zhao Chunbo1(), Huangfu Liyun1, Fan Xintong1, Chen Shanshan1, Han Zhongcai2, Han Yuzhu1   

  1. 1College of Horticulture, Jilin Agricultural University, Changchun 130000, Jilin, China
    2Jilin Academy of Vegetable and Flower Sciences, Changchun 130000, Jilin, China
  • Received:2022-04-09 Revised:2023-07-14 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to explore the differences in potassium accumulation and transport and yield in potato at different growth stages under different potassium sources, the medium and late maturing variety Yanshu 4 was used as the material, and six treatments of no potassium fertilizer (CK), base fertilizer 1/2 KCl+topdressing 1/2 KCl (K1), base fertilizer 1/2 K2SO4+topdressing 1/2 K2SO4 (K2), base fertilizer 1/2 K2SO4+topdressing 1/2 KCl (K3), base fertilizer 1/2 KCl+topdressing 1/2 K2SO4 (K4), base fertilizer 1/4 KCl-1/4 K2SO4+topdressing 1/4 KCl-1/4 K2SO4 (K5) were set. The results showed that the accumulation of potassium in vegetative organs was the highest in the expansion period. The highest accumulations of leaves, stems, roots and stolons were K4, K5, K3, K3, but the highest accumulation of potassium in tubers was K5. The maximum accumulation rate of plants was the highest under the treatment of K4, and the occurrence time was the latest, which increased by 22.16%-30.64% and delayed by 1.8-6.4d compared with other treatments. The contribution rates of potassium transport in roots, stems, leaves, stolons were 5.24%-7.55%, 42.40%-62.44%, 10.09%-19.44%, 1.50%-2.25%, respectively. At the same time, the transport rate of potassium in various vegetative organs of K4 treatment was higher than that of potassium chloride or potassium sulfate alone. The number of tubers per plant under each treatment was higher than that of the CK. The yield of tubers per plant under the treatment of K5 reached 817.19g/plant, which was higher than other treatments and significantly different from the CK. At the same time, the accumulation of potassium in each organ was significantly correlated with the number of tubers per plant and yield. K5 treatment had strong potassium accumulation and transport capacity and could increase yield, at the same time, maintaining higher potassium accumulation in each organ before maturity could increase the number of tubers.

Key words: Different potassium sources, Potato, Accumulation and transport, Yield

Table 1

"

器官
Organ
处理
Treatment
钾积累量Potassium accumulation 器官
Organ
处理
Treatment
钾积累量Potassium accumulation
30d 45d 60d 75d 90d 30d 45d 60d 75d 90d
叶片
Leaf
K1 0.690b 0.843b 1.206bc 1.052bc 0.687ab 根Root K4 0.228d 0.247d 0.416b 0.371b 0.119d
K2 0.584d 0.722c 1.324ab 1.102ab 0.577d K5 0.287b 0.304b 0.410b 0.335c 0.119d
K3 0.615c 0.755c 1.076c 0.935cd 0.663c 地下茎
Stolon
K1 0.012d 0.040b 0.105e 0.093d 0.035d
K4 0.778a 0.956a 1.398a 1.219a 0.697a K2 0.015cd 0.059ab 0.111d 0.095d 0.047c
K5 0.614cd 0.773c 1.156c 0.883d 0.673bc K3 0.031a 0.065a 0.139a 0.125a 0.051ab
地上茎
Stem
K1 1.050a 2.173a 3.058c 3.160a 1.773a K4 0.022b 0.063a 0.132b 0.118b 0.049bc
K2 0.760bc 1.730c 2.871d 2.667d 1.121c K5 0.017c 0.060ab 0.123c 0.102c 0.053a
K3 0.750bc 1.558d 3.303b 2.877b 0.893d 块茎
Tuber
K1 0.707c 0.831e 1.513e 3.001e
K4 0.703c 1.424e 3.349b 2.335e 0.889d K2 0.632d 1.601b 1.991d 3.802d
K5 0.800b 2.011b 3.717a 2.822c 1.460b K3 0.967a 1.689a 3.541a 4.134b
根Root K1 0.245c 0.266c 0.360c 0.310cd 0.206b K4 0.429e 1.319c 2.994b 3.972c
K2 0.212e 0.249d 0.396b 0.276d 0.155c K5 0.910b 1.230d 2.460c 4.670a
K3 0.305a 0.324a 0.452a 0.417a 0.214a

Table 2

Logistic model and its parameters for potato potassium content"

处理
Treatment
回归方程
Regression equation
R2 最大速率[g/(株·天)]
Maximum rate [g/(plant·d)]
最大速率出现的天数
Days of maximum rate (d)
K1 y=9.637/(1+40.09e-0.0767x) 0.782 0.185 48.1
K2 y=9.096/(1+38.11e-0.0761x) 0.954 0.173 47.8
K3 y=12.04/(1+17.21e-0.0603x) 0.821 0.182 47.2
K4 y=11.54/(1+66.36e-0.07831x) 0.919 0.226 53.6
K5 y=12.29/(1+17.94e-0.05619x) 0.843 0.173 51.4

Fig.1

Potassium accumulation rate of potato under different potassium treatments"

Table 3

Potato vegetative organs potassium transport capacity, transport rate and contribution rate of transported potassium to tuber potassium accumulation"

处理
Treatment
钾转运量(g/株)
Potassium translocation (g/plant)
钾转运率
Potassium transfer rate (%)
钾转运对块茎贡献率
Contribution rate of potassium transport to tuber (%)

Root
地上茎
Stem

Leaf
地下茎
Stolon

Root
地上茎
Stem

Leaf
地下茎
Stolon

Root
地上茎
Stem

Leaf
地下茎
Stolon
K1 0.16c 1.27d 0.53b 0.07b 43.75d 56.35a 43.48c 63.23a 5.25d 42.40e 17.48b 2.25a
K2 0.24b 1.74c 0.74a 0.06b 61.08b 60.71b 50.63b 56.49a 6.36b 45.84d 19.44a 1.66b
K3 0.24b 2.42a 0.42c 0.09a 52.98c 73.28a 38.75d 56.49a 5.79c 58.54b 10.09c 2.15a
K4 0.30a 2.48a 0.71a 0.08a 72.00a 74.05a 55.83a 63.41a 7.55a 62.44a 17.82b 2.10a
K5 0.25b 2.26b 0.49b 0.07b 59.67b 60.75b 42.08c 57.03a 5.24d 48.35c 10.42c 1.50b

Fig.2

Potassium distribution ratio of different organs in main growth period of potato"

Fig.3

Effects of different potassium sources on tuber number and yield per plant Different lowercase letters indicate significant difference among different treatments at 5% level"

Table 4

Correlation of tuber number and tuber yield per plant with potassium accumulation in different organs"

产量因素
Yield trait

Root
地上茎
Stem
叶片
Leaf
地下茎
Stolon
块茎
Tuber
全株(不含块茎)
Plants (without tubers)
全株(含块茎)
Plants (with tubers)
单株结薯数Tuber number per plant 0.98** 0.90* 0.93** 0.81* 0.86* 0.95** 0.93**
单株结薯产量Tuber yield per plant 0.94** 0.93** 0.95** 0.98** 0.92** 0.93** 0.97**
[1] 屈冬玉, 谢开云, 金黎平, 等. 中国马铃薯产业发展与食物安全. 中国农业科学, 2005, 38(2):358-362.
[2] 曾小波. 各品种马铃薯的高原适应性探究. 南方农业, 2017, 11(17):9-11.
[3] 田甲春, 胡新元, 田世龙, 等. 19个品种马铃薯营养成分分析. 营养学报, 2017, 39(1):102-104.
[4] 赵萍. 马铃薯加工技术. 兰州: 甘肃科技出版社, 1999.
[5] 巩慧玲, 赵萍, 杨俊峰. 马铃薯块米贮藏期间蛋白质利维生素C含量的变化. 西北农业学报, 2004, 13(1):49-51.
[6] 文山州农业技术推广中心. 抓住机遇加速发展文山州马铃薯优势产业. 云南农业科技, 2003(1):53-56.
[7] 马国瑞, 王寿祥, 钟杭. 氯离子对马铃薯同化14CO2及吸收32P和15NO3的影响. 浙江农业大学学报, 1993(3):66-69.
[8] 毕诗婷. 不同钾肥品种及配施方式对马铃薯产量和品质的影响. 哈尔滨:东北农业大学, 2016.
[9] 李济宸, 李群. 马铃薯生产可以施用氯化钾. 科学种养, 2009 (4):13.
[10] 陈波浪, 盛建东, 蒋平安, 等. 不同棉花品种钾素吸收利用差异的比较. 植物营养与肥料学报, 2009, 15(5):1154-1159.
[11] 白莉萍, 隋方功, 孙朝晖, 等. 土壤水分胁迫对玉米形态发育及产量的影响. 生态学报, 2004, 24(7):1556-1560.
[12] 李飒, 彭云峰, 于鹏, 等. 不同年代玉米品种干物质积累与钾素吸收及其分配. 植物营养与肥料学报, 2011, 17(2):325-332.
[13] Ren L, Xu G, Kirkby E A, et al. The value of KCl as a fertilizer with particular reference to chloride: A mini review. Research Findings, 2015, 40(3):3-10.
[14] 殷文, 孙春明, 马晓燕, 等. 钾肥不同用量对马铃薯产量及品质的效应. 中国土壤与肥料, 2005(4):44-47.
[15] 李玉影. 两种不同钾肥在马铃薯上应用效果的研究. 中国马铃薯, 1997(4):209-212.
[16] 冯琰, 蒙美莲, 马恢, 等. 马铃薯不同品种氮、磷、钾与硫素吸收规律的研究. 中国马铃薯, 2008, 22(4):205-209.
[17] 刘长庆. 马铃薯不同钾肥应用效果研究. 安徽农学通报, 2009(15):117-118.
[18] Ittersum M K V, Scholte K. Shortening dormancy of seed potatoes by a haulm application of gibberellic acid and storage temperature regimes. American Potato, 1993, 70(1):7-19.
[19] 陈焕丽, 郭竞, 张晓静, 等. 不同形态钾肥对马铃薯产量及品质的影响. 中国瓜菜, 2021, 34(4):79-82.
[20] 赵欢, 芶久兰, 何佳芳, 等. 钾肥对马铃薯干物质积累、钾素吸收及利用效率的影响. 西南农业学报, 2015, 28(2):644-649.
[21] 胡岗, 赵欢, 秦松, 等. 有机钾与化学钾肥配施对黔中马铃薯产量、品质及钾素平衡的影响. 中国土壤与肥料, 2020(3):55-62.
[22] 鲍士旦. 土壤农化分析(3版). 北京: 中国农业出版社, 2000.
[23] 向达兵, 郭凯, 杨文钰, 等. 磷、钾营养对套作大豆钾素积累及利用效率的影响. 植物营养与肥料学报, 2010, 16(3):668-674.
[24] 丁凡, 王季春, 唐道彬, 等. 不同营养方式下雾培马铃薯对氮、磷、钾的吸收、利用及分配规律. 西南师范大学学报(自然科学版), 2008, 33(3):81-85.
[25] 何文寿, 马琨, 代晓华, 等. 宁夏马铃薯氮、磷、钾养分的吸收累积特征. 植物营养与肥料学报, 2014, 20(6):1477-1487.
[26] 盛晋华, 刘克礼, 高聚林, 等. 旱作马铃薯钾素的吸收、积累和分配规律. 中国马铃薯, 2003, 17(6):331-335.
[27] 刘克礼, 张宝林, 高聚林, 等. 马铃薯钾素的吸收、积累和分配规律. 中国马铃薯, 2003, 17(4):204-208.
[28] 沈学善, 屈会娟, 李金才, 等. 玉米秸秆还田和耕作方式对小麦养分积累与转运的影响. 西北植物学报, 2012, 32(1):143-149.
[29] 王克秀, 汪翠存, 唐铭霞, 等. 氮素水平对雾培马铃薯氮磷钾吸收、积累和分配规律的影响. 西南农业学报, 2020, 33(12):2852-2861.
[1] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[2] Zhou Xu, He Xiaolei, Cao Liang, Li Duo, Fu Chenye, Zhang Mingcong, Zhang Yuxian, Wang Mengxue. Effects of Different Water Stress and Rehydration at Seedling Stage on Antioxidant Properties and Yield of Soybean [J]. Crops, 2023, 39(6): 135-142.
[3] Yang Shanwei, Liang Renmin, Zhao Haihong, Wei Guijian, He Dengmei, Huang Xumou, Hu Zhongyin, Wei Chunxiang, Xu Chang, Wei Minchao, Wei Shuang, Luo Jiteng, Xu Yingying, Zhang Xiuhua, Han Yi, Wang Shiqiang. Effects of Low Temperature Stress at Booting Stage on Yield and Its Components of High Quality Fragrant Rice [J]. Crops, 2023, 39(6): 143-149.
[4] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[5] Dong Haosheng, Wang Qi, Yan Peng, Xu Yanli, Zhang Wei, Lu Lin, Dong Zhiqiang. Effects of ECK on the Lodging Resistance and Yield of Foxtail Millet Stem [J]. Crops, 2023, 39(6): 181-189.
[6] Liang Zhongyu, Xue Jun, Zhang Guoqiang, Ming Bo, Shen Dongping, Fang Liang, Zhou Linli, Zhang Yuqin, Yang Hengshan, Wang Keru, Li Shaokun. Effects of Phosphorus Application Rate on Lodging Resistance of Maize under Integrated Water and Fertilizer [J]. Crops, 2023, 39(6): 190-194.
[7] Duan Junya, Zhao Yuanyuan, Wei Jianyu, Wang Dexun, Wang Zheng, Wang Tingting, Shi Hongzhi. Effects of Foliar Spraying Polyaspartic Acid on Growth, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2023, 39(6): 195-201.
[8] Hao Zhiyong, Yang Guangdong, Hu Zunyan, Li Jinghua, Sun Bangsheng, Chen Linqi. Effects of Different Fertilizers on Yield, Agronomic Characteristics and Quality of Early Maturing Sorghum [J]. Crops, 2023, 39(6): 218-223.
[9] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[10] Liu Yan, Qu Hang, Xing Yuehua, Wang Xiaohui, Gong Liang. Effects of New Types of Nitrogen Fertilizer on Rice Growth, Nitrogen Use Efficiency and Economic Benefit [J]. Crops, 2023, 39(5): 110-116.
[11] Liu Qiuyuan, Li Meng, Gao Yangguang, Shi Mengyu, Wei Yunfei, Ji Xin, Li Li, Liu Yali, Wang Fujuan. Effects of Different Nitrogen Fertilization Patterns on Yield and Quality of Conventional Japonica Rice under Reduced Nitrogen [J]. Crops, 2023, 39(5): 131-137.
[12] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[13] Zhang Rong, Chen Xiaowen, Lu Ping, You Yanrong, Zhou Delu, Li Deming. Effects of Different Mulching Modes on Soil Moisture, Temperature and Yield of Potato in Dry Land [J]. Crops, 2023, 39(5): 145-150.
[14] Wu Xueqin, Liu Kaiyu, Han Chunhua, Alimujiang·Kelaimu , Cui Yannan, Li Jiangyu, Ma Chunmei, Zhong Wenfan, Zhao Qiang. Effects of 14% Thiobenzene-Dioxalon on Defoliation Ripening, Yield and Quality of Cotton [J]. Crops, 2023, 39(5): 164-169.
[15] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!