Crops ›› 2025, Vol. 41 ›› Issue (2): 141-148.doi: 10.16035/j.issn.1001-7283.2025.02.020

Previous Articles     Next Articles

Impacts of the Residual Effects of the Combined Application of Compound Fertilizers and Microbial Inoculant on Soil Physicochemical Properties and Quality of Foxtail Millet

Ma Yingchen(), Wang Jiatong, Feng Yanfei, Ma Haoxiong, Ren Xuejun, Guo Zhenqing, Li Yun, Han Yucui(), Lin Xiaohu()   

  1. College of Agronomy and Biotechnology, Hebei Normal University of Science & Technology / Hebei Key Laboratory of Crop Stress Biology, Qinhuangdao 066004, Hebei, China
  • Received:2024-02-09 Revised:2024-05-10 Online:2025-04-15 Published:2025-04-16

Abstract:

To elucidate the primary cultivation techniques for reducing fertilizer usage while enhancing efficacy in foxtail millet following winter wheat in the eastern Hebei, the influence of the residual effects of applying compound fertilizers combined with microbial inoculants during the preceding winter wheat cultivation on soil fertility, soil enzyme activity, foxtail millet nutritional quality, and yield. Furthermore, a comprehensive evaluation of the 12 treatment combinations was conducted through membership function analysis. The results demonstrated that the application of compound fertilizer and microbial inoculant during the preceding winter wheat season could enhance the yield and nutritional quality of foxtail millet while modulating soil physicochemical properties. The evaluation using the membership function model ranked A1M4 sixth, with the top five treatments of A3M4, A2M4, A3M2, A3M3, and A2M3. Notably, the levels of compound fertilizers used in A3M2, A3M3, and A2M3 were lower than the conventional fertilization levels, and the yield of A3M2, A3M3, and A2M3 were respectively 3.70%, 10.05%, and 7.33% higher than that of A1M4, with A3M3 and A2M3 showed significant higher than that of A1M4. Additionally, A3M2, A3M3, and A2M3 outperformed A1M4 in terms of foxtail millet nutritional quality, soil nutrients, and soil enzyme activity. Considering yield and quality of foxtail millet, and physicochemical properties of the soil, the fertilizer combinations A3M2, A3M3, and A2M3 are recommended as rational fertilizer application methods to reduce fertilizer usage and enhance efficacy for foxtail millet following winter wheat in eastern Hebei.

Key words: Foxtail millet, Microbial inoculant, Compound fertilizer, Quality, Yield, Soil fertility

Table 1

Experimental fertilization design kg/hm2"

处理
Treatment
施肥水平Fertilization level
微生物菌剂
Microbial inoculant
复合肥
Compound fertilizer
A1M1 0 0
A1M2 0 225
A1M3 0 450
A1M4 0 675
A2M1 150 0
A2M2 150 225
A2M3 150 450
A2M4 150 675
A3M1 300 0
A3M2 300 225
A3M3 300 450
A3M4 300 675

Table 2

Soil nutrients in the 0-20 cm layer before seeding of post-foxtail millet under different fertilization levels after harvest of previous winter wheat"

处理
Treatment
有机质
Organic matter
(g/kg)
全氮
Total nitrogen
(g/kg)
碱解氮
Alkali-hydrolyzed
nitrogen (mg/kg)
全磷
Total phosphorus
(g/kg)
速效磷
Rapidly available
potassium (mg/kg)
A1M1 16.25±0.13g 2.05±0.08g 71.31±1.06g 1.76±0.19d 18.39±0.65f
A1M2 18.96±0.39f 2.03±0.16f 80.36±2.91f 2.16±0.05c 20.87±0.39e
A1M3 19.79±0.13cd 2.15±0.02ef 88.27±2.48d 2.22±0.06c 21.81±0.49de
A1M4 19.87±0.06cd 2.15±0.02ef 86.48±2.55de 2.40±0.10b 23.68±0.05c
A2M1 19.19±0.50ef 2.21±0.15de 99.49±2.40bc 2.39±0.06b 22.30±0.26d
A2M2 19.59±0.39de 2.24±0.07cde 89.89±4.60d 2.40±0.11b 22.23±1.20c
A2M3 19.93±0.04cd 2.31±0.02bcd 99.71±2.01bc 2.55±0.07ab 23.58±0.04d
A2M4 20.15±0.40c 2.34±0.02bcd 103.93±4.37bc 2.61±0.03a 23.91±1.14bc
A3M1 19.83±0.13cd 2.37±0.02bc 96.95±8.05c 2.52±0.10ab 25.13±0.55a
A3M2 21.65±0.42b 2.44±0.10ab 100.17±7.16bc 2.54±0.08ab 25.08±0.44ab
A3M3 22.66±0.23a 2.52±0.08a 106.29±1.42ab 2.54±0.02ab 25.04±0.96ab
A3M4 23.05±0.24a 2.55±0.02a 111.61±1.82a 2.56±0.13ab 25.58±0.55a

Table 3

Changes of soil nutrient content after harvest of foxtail millet under the combined application of compound fertilizer and microbial inoculants"

处理
Treatment
有机质
Organic matter
(g/kg)
全氮
Total nitrogen
(g/kg)
碱解氮
Alkali-hydrolyzed
nitrogen (mg/kg)
全磷
Total phosphorus
(g/kg)
速效磷
Rapidly available
potassium (mg/kg)
A1M1 0.18±0.69a -0.06±0.03ab -0.02±1.33a -0.03±0.07ab -0.76±0.45abc
A1M2 -0.17±0.42ab 0.05±0.16a 0.00±0.00a -0.06±0.10ab 0.03±0.36ab
A1M3 -0.62±0.56ab -0.03±0.03ab 0.00±0.00a 0.25±0.58a -0.68±0.59abc
A1M4 -0.58±0.53ab -0.11±0.10ab 0.00±0.00a -0.05±0.04ab -1.07±0.05abc
A2M1 -0.28±0.18ab -0.30±0.01b -0.67±1.15a -0.02±0.10ab -0.69±0.11abc
A2M2 -0.19±0.24ab -0.03±0.01ab 0.00±0.00a -0.11±0.01b -0.76±0.16abc
A2M3 -0.47±0.16ab -0.33±0.02ab 0.00±0.00a -0.14±0.04b 0.78±1.56abc
A2M4 -0.10±0.09ab -0.07±0.03ab 0.00±0.00a -0.03±0.02ab -0.83±1.08abc
A3M1 -0.21±0.27ab -0.09±0.02ab 0.00±0.00a -0.26±0.06b -1.25±1.52bc
A3M2 -0.85±0.33b -0.17±0.15b 0.00±0.00a -0.12±0.07b -2.12±0.46c
A3M3 -0.65±0.72ab -0.63±0.02ab -0.33±0.58a -0.11±0.04b -2.59±2.10c
A3M4 -0.72±0.64b -0.63±0.03ab 0.00±0.00a -0.15±0.06ab -1.77±0.62bc

Table 4

Soil enzyme activity afterharvest of foxtail millet mg/kg"

处理
Treatment
脲酶
Urease
过氧化氢酶
Catalase
焦糖酶
Caramel enzyme
A1M1 1.83±0.05e 3.20±0.09e 7.44±0.05a
A1M2 1.87±0.03e 3.41±0.02d 7.46±0.04a
A1M3 1.92±0.04de 3.43±0.01d 7.47±0.07a
A1M4 1.95±0.11d 3.44±0.03cd 7.46±0.06a
A2M1 2.06±0.03c 3.42±0.02d 7.45±0.02a
A2M2 2.08±0.04c 3.45±0.02cd 7.49±0.01a
A2M3 2.14±0.04bc 3.43±0.01d 7.47±0.04a
A2M4 2.35±0.05b 3.47±0.04c 7.48±0.03a
A3M1 2.43±0.04a 3.50±0.02ab 7.44±0.01a
A3M2 2.35±0.02b 3.49±0.03b 7.49±0.05a
A3M3 2.31±0.04ab 3.50±0.02ab 7.49±0.02a
A3M4 2.32±0.03ab 3.55±0.04a 7.48±0.04a

Table 5

Effects of compound fertilizer combined with microbial inoculant on nutritional quality of foxtail millet %"

处理
Treatment
粗蛋白质含量
Crude protein content
碳水化合物含量
Carbohydrate content
总淀粉含量
Total starch content
粗脂肪含量
Crude fat content
膳食纤维含量
Dietary fiber content
A1M1 9.65±0.02a 75.34±0.11b 64.32±0.01a 3.82±0.11ab 2.49±0.06d
A1M2 9.67±0.09a 75.48±0.02b 64.31±0.31a 3.84±0.12ab 2.51±0.06cd
A1M3 9.68±0.02a 75.64±0.09b 64.45±0.05a 3.91±0.05ab 2.53±0.07bcd
A1M4 9.71±0.03a 76.51±1.22a 64.61±0.15a 3.92±0.04ab 2.66±0.04a
A2M1 9.63±0.04a 75.46±0.02b 63.88±0.08a 3.86±0.07ab 2.65±0.04a
A2M2 9.66±0.04a 75.61±0.05b 63.85±0.04a 3.85±0.10ab 2.60±0.03abc
A2M3 9.64±0.03a 75.34±0.02b 63.86±0.40a 3.80±0.06ab 2.62±0.02ab
A2M4 9.66±0.04a 75.89±0.12ab 63.89±0.08a 3.93±0.06b 2.65±0.01a
A3M1 9.66±0.02a 75.95±0.31ab 63.58±0.43a 3.93±0.06b 2.58±0.08abcd
A3M2 9.68±0.03a 75.95±0.63ab 63.56±0.01a 3.77±0.09b 2.57±0.04bcd
A3M3 9.66±0.02a 75.36±0.03b 63.65±5.83b 3.87±0.05ab 2.63±0.06a
A3M4 9.72±0.05a 75.69±0.03b 63.65±0.50a 3.80±0.05ab 2.61±0.04ab

Table 6

Effects of compound fertilizer combined with microbial inoculant on the content of essential amino acids in foxtail millet %"

处理
Treatment
赖氨酸
Lysine
亮氨酸
Leucine
异亮氨酸
Isoleucine
苏氨酸
Threonine
缬氨酸
Valine
蛋氨酸
Methionine
苯丙氨酸
Phenylalanine
A1M1 0.079±0.001bcd 0.65±0.01de 0.17±0.01b 0.16±0.01c 0.23±0.02bc 0.078±0.001b 0.059±0.004g
A1M2 0.076±0.001e 0.66±0.01cde 0.17±0.01bc 0.16±0.00c 0.21±0.02d 0.076±0.001b 0.054±0.002h
A1M3 0.081±0.002bc 0.71±0.01ab 0.17±0.01bc 0.17±0.01b 0.25±0.01b 0.077±0.001b 0.079±0.003bcde
A1M4 0.077±0.003cde 0.72±0.01ab 0.18±0.01a 0.17±0.01b 0.24±0.02b 0.078±0.001b 0.080±0.003bcd
A2M1 0.082±0.001b 0.68±0.01c 0.18±0.01a 0.18±0.02a 0.26±0.03a 0.078±0.001b 0.085±0.001ab
A2M2 0.082±0.001b 0.66±0.01d 0.18±0.01a 0.17±0.01bc 0.21±0.02cd 0.080±0.001b 0.084±0.012abc
A2M3 0.081±0.002bc 0.69±0.01bc 0.18±0.01a 0.17±0.01ab 0.19±0.02e 0.079±0.001b 0.078±0.012cde
A2M4 0.083±0.001ab 0.63±0.02e 0.18±0.01a 0.17±0.01bc 0.20±0.01cde 0.080±0.001b 0.063±0.002f
A3M1 0.082±0.002b 0.71±0.01ab 0.18±0.01a 0.17±0.01ab 0.21±0.02cd 0.090±0.003a 0.072±0.001de
A3M2 0.084±0.001a 0.74±0.01a 0.18±0.01a 0.17±0.01bc 0.22±0.01c 0.094±0.001a 0.084±0.004abc
A3M3 0.081±0.001bc 0.70±0.01b 0.18±0.01a 0.16±0.01c 0.24±0.03b 0.091±0.003a 0.070±0.003ef
A3M4 0.085±0.001a 0.73±0.01a 0.18±0.01a 0.17±0.01b 0.23±0.02bc 0.092±0.001a 0.093±0.002a

Table 7

Effects of compound fertilizer combined with microbial inoculant on the content of non-essential amino acids in foxtail millet %"

处理
Treatment
天冬氨酸
Aspartic acid
丙氨酸
Alanine
谷氨酸
Glutamic acid
丝氨酸
Serine
精氨酸
Arginine
酪氨酸
Tyrosine
甘氨酸
Glycine
A1M1 0.27±0.01b 0.32±0.01e 0.77±0.01b 0.21±0.01a 0.13±0.01a 0.083±0.001a 0.12±0.01b
A1M2 0.28±0.01ab 0.34±0.01de 0.70±0.01bc 0.21±0.00a 0.13±0.01a 0.092±0.004b 0.13±0.01b
A1M3 0.26±0.02c 0.36±0.01d 0.70±0.01bc 0.20±0.01a 0.13±0.01a 0.076±0.002e 0.14±0.01ab
A1M4 0.29±0.03a 0.44±0.01a 0.82±0.01a 0.19±0.01a 0.13±0.00a 0.075±0.007e 0.14±0.01ab
A2M1 0.30±0.01a 0.34±0.02de 0.83±0.01a 0.21±0.02a 0.13±0.01a 0.093±0.001b 0.13±0.01b
A2M2 0.29±0.01b 0.37±0.01cd 0.82±0.01a 0.18±0.01a 0.13±0.01a 0.096±0.001a 0.15±0.00a
A2M3 0.30±0.01a 0.40±0.01c 0.83±0.01a 0.21±0.01a 0.13±0.00a 0.084±0.001cd 0.13±0.01b
A2M4 0.28±0.01ab 0.44±0.02a 0.82±0.03a 0.21±0.01a 0.13±0.00a 0.088±0.003bc 0.16±0.01a
A3M1 0.27±0.02b 0.35±0.01d 0.83±0.02a 0.20±0.01a 0.13±0.01a 0.085±0.001c 0.13±0.01b
A3M2 0.28±0.01ab 0.37±0.01cd 0.83±0.02a 0.21±0.01a 0.13±0.00a 0.086±0.001c 0.16±0.01a
A3M3 0.30±0.01a 0.42±0.01b 0.84±0.01a 0.21±0.01a 0.13±0.01a 0.081±0.001d 0.13±0.01b
A3M4 0.29±0.01a 0.44±0.01a 0.85±0.00a 0.22±0.01a 0.13±0.01a 0.097±0.002a 0.17±0.02a

Fig.1

Effects of compound fertilizer combined with microbial inoculant on yield of foxtail millet Different lowercase letters indicate significant difference at P < 0.05 level."

Table 8

Comprehensive evaluation of different compound fertilizers combined with microbial inoculant"

处理
Treatment
得分
Score
排序
Ranking
处理
Treatment
得分
Score
排序
Ranking
A1M1 0.18 12 A2M3 0.51 5
A1M2 0.28 11 A2M4 0.69 2
A1M3 0.40 10 A3M1 0.48 7
A1M4 0.56 6 A3M2 0.63 3
A2M1 0.46 9 A3M3 0.59 4
A2M2 0.53 8 A3M4 0.84 1
[1] 李顺国, 刘斐, 刘猛, 等. 我国谷子产业现状发展趋势及对策建议. 农业现代化研究, 2014, 35(5):531-535.
[2] 刁现民. 中国谷子产业与产业技术体系. 北京: 中国农业科学技术出版社, 2011.
[3] 张大众, 刘佳佳, 冯佰利, 等. 中国谷子种植利用史及其演进启示. 草业学报, 2018, 27(3):173-186.
doi: 10.11686/cyxb2017191
[4] 河北省谷子产业全产业链发展实施方案. 河北农业, 2022(6):11-14.
[5] 崔宁波, 巴雪真. 丹麦农药和化肥规制及对中国的启示. 世界农业, 2020(11):73-80,90.
[6] 汪生新. 浅谈化肥过量施用的危害及防治措施. 青海农林科技, 2018(2):34-35,67.
[7] 罗爱国, 冯奕开, 庞琼, 等. 肥料、除草剂和硒配施对谷子品质的影响. 中国农学通报, 2023, 39(18):11-18.
doi: 10.11924/j.issn.1000-6850.casb2022-0701
[8] 张鹏飞, 周怀平, 杨振兴, 等. 有机无机肥配施对谷子产量及经济效益的影响. 山西农业科学, 2023, 51(7):756-763.
[9] 纪棨云. 西北地区生物炭和氮肥耦合下谷子生长及氮素转移利用机制研究. 榆林:榆林学院, 2023.
[10] 张辉, 李维炯, 倪永珍. 生物有机无机复合肥对土壤性质的影响. 土壤通报, 2006, 37(2):2273-2277.
[11] 马慧媛, 黄媛媛, 刘胜尧, 等. 微生物菌剂施用对设施茄子根际土壤养分和细菌群落多样性的影响. 微生物学通报, 2020, 47(1):140-150.
[12] 邹湘, 易博, 张奇春, 等. 长期施肥对稻田土壤微生物群落结构及氮循环功能微生物数量的影响. 植物营养与肥料学报, 2020, 26(12):2158-2167.
[13] 洪坚平, 谢英荷, Neumann G, 等. 两种微生物菌剂对小麦幼苗生长和磷吸收机理的影响研究. 中国生态农业学报, 2008, 16(1):105-108.
[14] 王立辉, 何志学, 李静, 等. 生物有机肥配施微生物菌剂对蒜苗生长、生理、产量及品质的影响. 甘肃农业大学学报, 2023, 58(5):63-70.
[15] 杨永青, 高芳芳, 马亚君, 等. 山西省旱作农业区不同施肥处理对谷子产量、品质及经济效益的影响. 作物杂志, 2020(4):195-201.
[16] 李双来, 胡诚, 乔艳, 等. 油―稻―稻种植制度下磷肥后效研究. 湖北农业科学, 2008, 47(9):1024-1026.
[17] 马浩雄, 马继钰, 郭振清, 等. 冀东地区冬小麦施用微生物菌剂和复合肥对后茬夏谷农艺性状及产量的影响. 河北科技师范学院学报, 2023, 37(4):1-6.
[18] 李丰先, 罗磊, 李亚杰, 等. 基于PCA和隶属函数法分析的马铃薯创新种质抗旱性鉴定与分类. 干旱区资源与环境, 2022, 36(11):141-147.
[19] 赵晨光, 牛司耘, 陈勋, 等. 复合肥料对茶叶产量、品质及茶园土壤肥力的影响. 中国农业科技导报, 2022, 24(6):206-217.
doi: 10.13304/j.nykjdb.2021.0304
[20] 周丽平, 赵秋, 张新建, 等. 新型增效复合肥料对水稻养分吸收和产量的影响. 华北农学报, 2022, 37(2):112-120.
doi: 10.7668/hbnxb.20192829
[21] 张辉, 李维炯, 倪永珍, 等. 生物有机无机复合肥效应的初步研究. 农业环境科学学报, 2002, 21(4):352-356.
[22] 黄小辉, 冯大兰, 杨华均, 等. 不同施肥处理对‘渝城1号’核桃产量、品质和土壤肥力的影响. 东北林业大学学报, 2024, 52(3):97-102,140.
[23] 祝英豪, 衡博文. 减施化肥、配施微生物菌剂对大豆产量的影响. 农业工程技术, 2022, 42(35):18-20.
[24] Wang M H, Liu Y, Wang S Q, et al. Development of a compound microbial agent beneficial to the composting of Chinese Medicinal Herbal Residues. Bioresource Technology, 2021,330:124948.
[25] 黄媛媛, 黄亚丽, 王艳群, 等. 秸秆腐熟菌剂用量对土壤性质及小麦产量的影响. 河北农业大学学报, 2023, 46(6):10-16.
[26] 逄焕成, 李玉义, 严慧峻, 等. 微生物菌剂对盐碱土理化和生物性状影响的研究. 农业环境科学学报, 2009, 28(5):951-955.
[27] 罗林毅, 陈瑞杰, 阮向阳, 等. 微生物菌剂对滴灌棉田土壤养分和棉花产量及品质的影响. 新疆农业科学, 2024, 61(1):26-33.
doi: 10.6048/j.issn.1001-4330.2024.01.004
[28] 丁映风, 朱红青, 姚巧敏, 等. 复合微生物菌剂对设施栽培番茄的田间应用效果. 云南农业科技, 2023(1):11-13,19.
[29] 闫锋, 董扬, 赵富阳, 等. 微生物菌剂对谷子生长及土壤酶活性的影响. 黑龙江农业科学, 2024(5):27-31.
[30] 章孜亮, 李婧, 高俊, 等. 不同微生物菌剂在马铃薯种植中的应用效果. 现代化农业, 2023(12):23-25.
[31] 贺善睦, 姚拓, 雷杨, 等. 微生物菌剂与化肥减量配施对猫尾草生长的影响. 草业科学, 2024, 41(11):2706-2714.
[32] 李青璞, 白建海, 姚拓, 等. 微生物菌剂与氮肥配施对紫花苜蓿生长及土壤性质的影响. 草地学报, 2024, 32(1):314-321.
doi: 10.11733/j.issn.1007-0435.2024.01.032
[33] 王丽丽, 朱诗君, 沈岚, 等. 微生物菌剂结合改良剂对连作草莓品质和土壤环境的影响. 中国农学通报, 2023, 39(23):39-44.
doi: 10.11924/j.issn.1000-6850.casb2022-0632
[34] 王艳平, 李萍, 吴文强, 等. 生物有机肥和微生物菌剂对北京山区连作茶菊生长及土壤肥力的影响. 中国土壤与肥料, 2023 (12):107-113.
[35] 姜永雷, 肖雨, 邓小鹏, 等. 微生物菌剂对烟草连作土壤理化性质及土壤胞外酶酶活性的影响. 中国烟草学报, 2022, 28 (4):59-66.
[1] He Yunxia, Ma Jianhui, Zhang Daijing, Liu Donghua, Chao Xiaoyan, Chen Huiping, Li Chunxi. Study on the Effect of Different Nitrogen Fertilizer Synergists on Reducing Gaseous Nitrogen Loss and Increasing Yield in Wheat Field of Northern Henan [J]. Crops, 2025, 226(3): 108-115.
[2] Wang Jiatong, Ma Yingchen, Feng Yanfei, Lu Jiahui, Guo Zhenqing, Li Xueli, Li Yun, Han Yucui, Lin Xiaohu. Effects of Reduction of Nitrogen Topdressing Application on Phosphorus and Potassium Fertilizer Utilization and Quality of Spring Wheat in Eastern Hebei Province [J]. Crops, 2025, 226(3): 141-148.
[3] Wang Yi, Ren Yongfu, Zhang Zhengpeng, Ding Defang, Zhang Jing, Liu Yihong, Sun Duoxin, Chen Guangrong. The Effects of Different Covering Materials on Soil Environment and Maize Yield in Hexi Irrigation Area [J]. Crops, 2025, 226(3): 149-155.
[4] Cao Zhengnan, Zhao Zhendong, Hu Bo, Yu Han, Ning Xiaohai, Zhao Zeqiang, Cao Liyong. Effects of Nitrogen Fertilizer and Promoting Rot Bacteria Fertilizer on Decomposition Effect of Returning Rice Straw to Field and Yield in Cold Regions [J]. Crops, 2025, 226(3): 172-177.
[5] Hou Nan, Wu Fengjie, Qi Xiangkun, Wang Yufeng, Yang Kejun, Fu Jian. Effects of Different Nitrogen Application Levels on Carbon Metabolism of Waxy Maize during Filling Period in Black Soil Area [J]. Crops, 2025, 226(3): 178-184.
[6] Zhu Jindi, Zhu Xuegang, Du Wenqing, Qiu Tuoyu, Zhao Xinbin. Effects of Chemical Fertilizer Reduction Combined with Organic Fertilizer Application on Photosynthetic Characteristics, Quality and Yield of Tomatoes Cultivated in Facilities [J]. Crops, 2025, 226(3): 185-189.
[7] Li Hu, Huang Qiuyao, Wu Zishuai, Liu Guanglin, Chen Chuanhua, Luo Qunchang, Zhu Qinan. Effects of Planting Density and Nitrogen Application Rate on Yield and Rice Quality of High-Quality Conventional Rice Guiyu 12 [J]. Crops, 2025, 226(3): 195-201.
[8] Lan Xiu, Li Hengrui, He Hongliang, Ma Xianhua, Huang Xiaojuan, Li Tianyuan, Wei Haiqiu, Jiang Qingmei, Ruan Lixia, Yang Haixia, Liu Bingji, Tang Danfeng. Effects of Intercropping of Sugarcane and Platostoma palustre on Crop Yield, Quality and Economic Benefit [J]. Crops, 2025, 226(3): 202-209.
[9] Wei Mengyang, Luo Zhenbao, He Shuai, Ma Qian, Ma Guankai, Xi Feihu, Luo Dongsheng, Jing Yanqiu, Yu Qiwei, Wang Maoxian. Effects of Interaction between Photosynthetic Bacteria and the Number of Retained Leaves on Physiological Metabolism, Chemical Quality, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 226(3): 210-217.
[10] Yang Zepeng, Wan Kejun, Zheng Shenghua, Ao Yuqin, Ma Mingkun, Wan Xue, Li Shanshan, Song Xin, Wang Changtao, Chen Shanghong, Liu Dinghui, Chen Honglin. Effects of Nitrogen Fertilizer and Seeding Amount Configuration on Yield Formation of Rapeseed by Aerial Seeding [J]. Crops, 2025, 226(3): 225-232.
[11] Liang Hui, Zhang Jianxin, Xue Lihua, Jia Keke. Effects of Drip Irrigation Amount on Root Growth and Yield of Xinnongdou 2 under the Condition of the Postpone of Water and Nitrogen [J]. Crops, 2025, 226(3): 233-240.
[12] Wang Heya, Luo Jingjing, Meng Ling, Ai Haifeng, Wang Bin, Li Huaisheng, Xu Jingpeng, Xu Xiangyang. Yield Sensitivity Analysis of Edible Sunflower Varieties in Taʼe Basin [J]. Crops, 2025, 226(3): 30-37.
[13] Hao Hongbo, Yu Guohong, Liu Shanhe, Zhang Ruixue, Liu Jianjun, Li Mingzhe. The Study on the Breeding and Prematurity of a Ultra-Early Maturing and Dwarf Foxtail Millet Variety Henggu 12 [J]. Crops, 2025, 226(3): 38-44.
[14] Zhao Yajie, Wen Rui, Jia Yiming, Jin Xiaolei, Zhang Yonghu, Zhang Lijun, Zhang Biao, Zhang Hui, Yu Lixia. Analysis of Genetic Diversity of Phenotypic Traits of Foxtail Millet Germplasm Resources [J]. Crops, 2025, 226(3): 61-69.
[15] Mao Shunxin, Xiao Wuwei, Zhang Zuolin, Huang Jiada, Wang Fei, Huang Jianliang, Peng Shaobing, Cui Kehui. Effects of Different Irrigation Patterns and Fertilizer Managements on the Growth of Axillary Buds and Yield Formation of Ratoon Season in Ratoon Rice [J]. Crops, 2025, 226(3): 92-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .