作物杂志, 2024, 40(3): 1-7 doi: 10.16035/j.issn.1001-7283.2024.03.001

专题综述

水稻白叶枯病抗性基因的研究及应用进展

陈洛,1, 朱稳1, 李雯慧2, 赵均良2, 周玲艳,1, 杨武,2

1仲恺农业工程学院农业与生物学院,510225,广东广州

2广东省农业科学院水稻研究所/广东省水稻育种新技术重点实验室/广东省水稻工程实验室/农业农村部华南优质稻遗传育种实验室(部省共建),510640,广东广州

Advances in Research and Application of Rice Bacterial Blight Resistance Genes

Chen Luo,1, Zhu Wen1, Li Wenhui2, Zhao Junliang2, Zhou Lingyan,1, Yang Wu,2

1College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225,Guangdong, China

2Rice Research Institute, Guangdong Academy of Agricultural Sciences / Guangdong Key Laboratory of New Technology in Rice Breeding / Guangdong Rice Engineering Laboratory / Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, Guangdong, China

通讯作者: 杨武,研究方向为水稻分子育种,E-mail:yangwu@gdaas.cn周玲艳,研究方向为植物生物技术,E-mail:lingyanzh@163.com

收稿日期: 2023-03-9   修回日期: 2023-05-1   网络出版日期: 2023-09-25

基金资助: 广东省农业科学院科技创新战略专项资金(高水平农科院建设)(R2023PY-JX001)
广东省农业科学院科技创新战略专项资金(高水平农科院建设)(R2021PY-QF002)
广东省水稻育种新技术重点实验室(2020B1212060047)

Received: 2023-03-9   Revised: 2023-05-1   Online: 2023-09-25

作者简介 About authors

陈洛,研究方向为水稻稻米品质,E-mail:13229416940@163.com

摘要

水稻是最重要的粮食作物之一。由革兰氏阴性菌黄单胞杆菌水稻致病变种(Xanthomonas oryzae pv. oryzaeXoo)引发的水稻白叶枯病是最古老和严重危害水稻安全生产的一种细菌性病害,具有突变性强、传播快和分布广等特点。发掘和鉴定新抗原,利用抗性基因培育抗病品种是防治白叶枯病的有效途径。截至目前,已有49个水稻白叶枯病抗性基因被鉴定,其中42个抗性基因已被定位,包括28个显性基因和14个隐性基因,17个抗性基因已被成功克隆。这些抗性基因的表达与否、或与病原菌表达蛋白的互作是产生抗性的关键。本文对水稻白叶枯病抗性基因的研究和育种应用进展进行了综述,并提出展望,为水稻抗白叶枯病的研究和分子育种提供参考。

关键词: 水稻; 白叶枯病; 抗性基因; 分子育种

Abstract

Rice is one of the most important food crops. Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the oldest and most serious bacterial diseases that endangers the safe production of rice. The Xoo, which has the characteristics of strong mutability, rapid spread and wide distribution. It is an effective way to control bacterial blight by discovering and identifying resistance genes and breeding resistant varieties with them. Up to now, 49 resistance genes related to rice bacterial blight have been identified, among which 42 resistance genes have been located, including 28 dominant genes and 14 recessive genes. 17 resistance genes have been successfully cloned. The expression of resistance genes or interactions between resistance genes and proteins expressed by pathogen is the key to induce resistance. In this paper, the research and breeding application progress of rice bacterial blight resistance genes were reviewed and prospects. The aim of this paper is to provide valuable information for the further study and molecular breeding of rice bacterial blight.

Keywords: Rice; Bacterial blight; Resistance gene; Molecular breeding

PDF (475KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈洛, 朱稳, 李雯慧, 赵均良, 周玲艳, 杨武. 水稻白叶枯病抗性基因的研究及应用进展. 作物杂志, 2024, 40(3): 1-7 doi:10.16035/j.issn.1001-7283.2024.03.001

Chen Luo, Zhu Wen, Li Wenhui, Zhao Junliang, Zhou Lingyan, Yang Wu. Advances in Research and Application of Rice Bacterial Blight Resistance Genes. Crops, 2024, 40(3): 1-7 doi:10.16035/j.issn.1001-7283.2024.03.001

水稻白叶枯病是由革兰氏阴性菌黄单胞杆菌水稻致病变种(Xanthomonas oryzae pv. oryzaeXoo)引发的,是普遍危害水稻生产的一种毁灭性细菌病害,其流行范围已遍及全世界,在我国的华中、华东尤其是华南稻区,经常暴发成灾,严重时可使水稻减产50%[1]。白叶枯病的病原菌可在土壤、杂草、秸秆等越冬,在水稻生长季节由伤口或水孔入侵,危害稻株维管束,使维管束阻塞,导致植物发病。其病症往往是叶尖出现病斑,随后病斑变黄和扩展,最后病斑蔓延覆盖整个叶片。如果该病发生在抽穗期,则会造成不完熟或者不育的谷粒,导致减产和稻米品质下降。由于该病原菌在维管束内危害,尚缺乏安全和高效的内吸杀菌剂;加之病原菌的入侵方式难以防备,台风和暴雨等造成的损伤和洪涝为其暴发流行创造了有利条件,使得该病往往发病急,传播快,难以控制[2]。目前,选育抗病品种是防治白叶枯病非常经济且有针对性的措施。此外,由于该病原菌的致病特点及其高度变异性,选择对应有效的抗性基因是抗病育种的基础,也是抗病品种应用成功的关键。为统一命名鉴定出的白叶枯基因,日本热带农业研究中心和国际水稻研究所合作,制定了统一的鉴别标准[3]

随着分子生物学的迅猛发展,新的白叶枯病抗性基因不断被鉴定和克隆,并进行功能研究,为抗白叶枯病新品种的培育提供了新选择。截至目前,已报道和确认的与水稻白叶枯病相关的抗性基因有49个,编号已排至Xa47(t)[4]。这49个基因分布在除9号和10号染色体外的其他染色体上,包括32个显性基因和17个隐性基因,除7个基因[xa15Xa16Xa17Xa18xa26(t)xa28(t)Xa37(t)]未被定位外,其余42个基因都已被定位,有17个基因已经被成功克隆。有趣的是,有很多抗性基因成簇分布在4号和11号染色体上。鉴定这些基因的无毒菌株(小种)和供体品种都可以在国家水稻数据中心(http://www.ricedata.cn/)查阅。本文对近年来水稻白叶枯病相关抗性基因的定位、克隆和功能研究进行了综述,归纳了我国抗白叶枯病育种的进展,为水稻白叶枯病的研究和分子育种提供参考。

1 水稻中已被克隆和进行功能研究的白叶枯病抗性基因

白叶枯病抗性基因的克隆是在分子水平上深入认识寄主抗性和寄主与病原菌互作机制的前提。截至目前,水稻中已有17个白叶枯病抗性基因被克隆成功,包括13个显性基因和4个隐性基因,这些基因的详细信息见表1。从这些基因的功能来看,大致有2个特点:(1)基因的表达与否是抗病性的关键,例如Xa1Xa10xa13Xa23Xa27xa41(t);(2)通过病原菌表达的蛋白与抗性基因的启动子区或者基因内部保守结构(例如LRR结构)互作,进而产生抗性,例如Xa3/Xa26Xa10xa13Xa21Xa23Xa27xa41(t)Xa4是最近被克隆和功能研究的一个新基因,其首次注册是在20世纪70年代初,是一个被广泛应用到育种中的抗性基因。Xa4基因编码细胞壁相关激酶(WAK),该激酶促进纤维素合成,并抑制细胞壁疏松,增强细胞壁,从而提高植株机械强度,降低植株高度,保证了持久的抗病性。中国的大多籼稻品种都携带Xa4基因。Xa23也是研究较为深入的基因,其对目前检测的生理小种都有高抗性,并且是显性的全生育期抗病。研究[5]发现,已检测的生理小种中都存在TALE效应因子(AvrXa23),AvrXa23能够特异结合Xa23启动子区的TALE结合元件(EBE),进而激活Xa23的表达,而感病xa23则不含有EBE结合元件。Xa2Xa14Xa31(t)Xa45(t)Xa1的等位基因,它们之间的差别在于羧基端由93个氨基酸残基组成的串联重复单元(LRR结构域)的数量不同。其中,Xa14是最少LRR重复单元数(4个)和最广抗谱的成员。

表1   已克隆和进行功能研究的白叶枯病抗性基因

Table 1  The cloned and functionally studied resistance genes to bacterial blight

基因
Gene
显/隐性
Dominance(+)/recessive(-)
染色体
Chromosome
基因座
Gene locus
功能特点
Function characteristic
参考文献
Reference
Xa1
+
4
LOC_Os04g53120
Xa1是NBS-LRR类成员,在病原体和伤口接种下被诱导表达[6]
Xa2+4LOC_Os04g53120Xa2Xa14Xa31(t)Xa45(t)均是Xa1的等位基因,能被任一典型结构的TALE激活抗性(ETI)并被iTALE所抑制(ETS)

[5]



Xa14+4LOC_Os04g53120
Xa31(t)+4LOC_Os04g53120
Xa45(t)+4LOC_Os04g53120
Xa3/Xa26

+

11

LOC_Os11g47000

Xa3/Xa26是组成型表达基因,编码LRR受体激酶蛋白,抗病Xa3/Xa26和感病xa3/xa26蛋白序列的差异导致了抗性的差异[7]

Xa4
+
11
LOC_Os11g47140
Xa4编码细胞壁相关激酶,通过加强细胞壁增加机械强度并降低植株高度[8]
xa5

-

5

LOC_Os05g01710

xa5编码一个真核生物转录因子ⅡA伽马亚基(TFⅡAγ),抗病xa5与感病Xa5的蛋白序列存在1个氨基酸变异是导致抗性差异的原因[9]

Xa7

+

6

日本晴中缺失该基因位点,镇恢084的6号染色体上M10标记左侧28 kb内的G1基因即Xa7Xa7受AvrXa7和PthXo3效应子诱导表达,进而产生抗性
[10]

Xa10

+

11

LOC_Os11g37570

Xa10启动子区域含有特异激活Xa10表达的AvrXa10结合元件,Xa10表达导致细胞程序性死亡[11]

xa13
-
8
LOC_Os08g42350
隐性xa13的启动子突变导致宿主与病原体相互作用时该基因表达下调,进而产生抗性[12]
Xa21
+
11
LOC_Os11g35500
Xa21编码类受体激酶蛋白,与激活因子AvrXa21共同调控白叶枯病的抗性[13]
Xa23
+
11
LOC_Os11g37620
Xa23启动子区含有AvrXa23结合元件,能够特异激活Xa23的表达,进而引发超敏反应[14]
xa25
-
12
LOC_Os12g29220
xa25编码MtN3/saliva家族的一员,对菲律宾小种PXO339表现专抗[15]
Xa27+6LOC_Os06g39810Xa27表达依赖于携带avrXa27的病菌侵染[16]
xa41(t)
-
11
LOC_Os11g31190
xa41(t)启动子区18个碱基的缺失与抗性密切相关[17]
Xa47(t)a
+
11
LOC_Os11g46200
Xa47(t)aXa47(t)的A基因型,编码NLR类蛋白,受病原菌诱导表达[18]

新窗口打开| 下载CSV


2 水稻中已定位的白叶枯病抗性基因

除上述已克隆的17个基因外,目前共有25个白叶枯病抗性基因被定位,包括15个显性基因和10个隐性基因,其中大多数基因都被精细定位,列于表2Xa43(t)、xa44(t)、xa-45(t)Xa46(t)是最近被精细定位的4个基因。Xa43(t)xa44(t)都被定位于11号染色体,Xa43(t)的候选基因(Os11g0687700Os11g0688000)和xa44(t)的候选基因(Os11g0690066Os11g0690466)在接种后的表达显著提高[19-20]xa-45(t)被定位于8号染色体IRGSP-1.0上的80 kb区域,有9个候选基因,从LOC_Os08g42410中开发的一个STS标记与xa-45(t)共分离[21]Xa46(t)被定位在11号染色体RM26981和RM26984标记之间约65.34 kb的区域内,Chen等[22]通过RNA-seq分析差异表达基因,LOC_Os11g37540等位基因最可能是Xa46(t)的候选基因。

表2   已定位的白叶枯病抗性基因

Table 2  The mapped resistance genes to bacterial blight

基因
Gene
显/隐性
Dominance(+)/recessive(-)
染色体
Chromosome
连锁标记或位置
Linked marker or position
候选基因
Candidate gene
参考文献
Reference
xa8
-
7
RM21044 (7.0 cM), RM21045 (9.9 cM)
LOC_Os07g07400, LOC_Os07g07410,
LOC_Os07g07420
[23]
Xa11+3RM347 (2.0 cM), KUX11 (1.0 cM)9个BAC克隆[24]
Xa12+4[25]
xa19-7RM8262-RM6728 (0.8 cM)[26]
xa20-3KIC3-33.88 (33.0 Mb), KIC3-34.06 (33.2 Mb)34个基因[27]
Xa22(t)+11R1506-M3H8 (100 kb)[28]
xa24(t)-2RM14222-RM14226 (0.07 cM)16个基因[29]
Xa25(t)+12NBS109 (2.5 cM), G1314 (7.3 cM)[30]
Xa29(t)+1C904-R596 (1.3 cM)[31]
Xa30(t)+11RM1341 (11.4 cM)[32]
Xa32(t)+11ZCK24 (0.5 cM), RM6293 (1.5 cM)[33]
xa32(t)-12RM20A (1.7 cM)[34]
Xa33+7RMWR7.1 (0.9 cM), RMWR7.6 (1.2 cM)8个基因[35]
xa33(t)-6RM20593[36]
xa34(t)-1RM10929-BGID25 (204 kb)21个开放阅读框[37]
Xa35(t)+11RM7654 (1.1 cM), RM6293 ( 0.7 cM)[38]
Xa36(t)+11RM224-RM2136 (4.5 cM)[39]
Xa38
+
4
Oso4g53050-1
LOC_Os04g53030, LOC_Os04g53050,
LOC_Os04g53060
[40]
Xa39+11RM26985-DM13 (0.51 cM)LOC_Os11g37759[41]
Xa40+11RM27320-ID55.WA18-5 (80 kb)LOC_Os11g46900[42]
xa42

-

3

KGC3_16.342-KGC3_16.399 (57 kb)

LOC_Os03g28389, LOC_Os03g28400,
LOC_Os03g28420, LOC_Os03g28410,
LOC_Os03g28910
[43]

Xa43(t)+11IBb27os11_14-S_BB11.ssr_9 (119 kb)LOC_Os11g46060, LOC_Os11g46100[19]
xa44(t)-11#46. Os11g0689400-#5. RM27318 (120 kb)Os11g0690066, Os11g0690466[20]
xa-45(t)-8IRGSP-1.0 (80 kb)9个基因[21]
Xa46(t)+11RM26981-RM26984 (65.34 kb)LOC_Os11g37540, LOC_Os11g37550[22]

新窗口打开| 下载CSV


3 白叶枯病抗性QTL的研究进展

由于白叶枯病菌具有多样性和快速进化的特性,非小种特异性数量抗性QTL的鉴定和利用成为防治白叶枯病的有效策略。目前,利用重组自交系(recombinant inbred lines,RILs)群体和双单倍体(doubled haploid,DH)群体定位到的白叶枯病抗性QTL已经超过70多个。如张剑霞等[44]以珍汕97和武育梗2号构建DH群体,共检测到26个QTL。薛皦等[45]利用粤农丝苗和丽江新团黑谷构建RILs及回交群体,在11号染色体精细定位到一个抗性QTL qBB-11-1。随着测序技术的快速发展,基于连锁不平衡的全基因组关联分析(genome-wide association study,GWAS)是近年来鉴定QTL/基因的高效方法之一,并迅速应用于遗传分析。Lu等[46]鉴定了421份水稻对我国华南地区强毒力菌株C5和IV型白叶枯病菌的抗性,根据表型和GWAS鉴定到13个白叶枯病抗性QTL,其中有5个QTL区间为已克隆或精细定位的水稻白叶枯病抗性基因,其余8个为未报道的新位点,并在5号染色体上的一个新位点qBB5.1鉴定到一个抗病候选基因LOC_Os05g01610。Shu等[47]通过259份水稻材料对2个白叶枯病小种的抗性变异数据,结合GWAS和转录组分析,检测到抗感水稻材料之间109个差异表达基因,并获得2个候选基因LOC_ Os07g02560LOC_Os07g02570。Yang等[48]对华南水稻核心种质白叶枯病抗性进行了全基因组关联分析,共鉴定出17个与抗性相关的QTL,其中有13个新发现的QTL,并鉴定出一个新位点qBBR11-4的候选基因OsMYB21,过量表达OsMYB21基因导致白叶枯病抗性下降。

4 水稻抗白叶枯病的育种进展

早期育种家们通过常规育种的办法,选育出一批抗白叶枯病的品种和材料。但该方法耗时耗力,对于多基因聚合和隐性基因的利用比较困难。随着白叶枯病抗性基因不断被鉴定和分子标记的开发,分子标记辅助选择已成为育种常规化的手段。利用紧密连锁的分子标记或功能标记来追踪抗性基因,可在早代选择并不受生理小种和环境的影响,提高育种效率。利用白叶枯病抗性单基因、多基因、以及其他优异基因的聚合一直被广泛应用于水稻的分子育种。Xa3Xa4是最早使用的主要抗性基因,随着抗性被病原菌不断克服,xa5Xa7Xa21Xa23等广谱抗性基因逐渐被应用到育种中,这几个基因也是目前抗白叶枯病分子育种中最常利用的基因。由于白叶枯病抗性基因之间存在互作性,不同抗性基因的组合能够增强对病原菌的抗性和拓宽抗谱,因此,白叶枯病抗性的聚合成为抗病品种培育的一个重要途径,常见的组合有Xa4/xa5Xa4/Xa21Xa7/Xa21Xa21/Xa23Xa4/Xa21/Xa27xa5/xa13/Xa21Xa4/xa5/xa13/Xa21等。Huang等[49]将4个白叶枯病抗性基因Xa7Xa21Xa22Xa23聚合到华恢1035,后代材料对我国11个代表性的白叶枯病菌表现出不同程度的抗性水平。此外,在分子育种过程中,往往需要同时兼顾选择其他优良性状相关基因,例如其他抗病虫害基因、优良米质基因和杂交水稻相关的育性基因等。Kumar等[50]通过回交育种,将白叶枯病抗性基因Xa21和稻瘟病抗性基因Pi54聚合到恢复系RPHR- 1005,获得抗白叶枯病和稻瘟病的后代材料。Xu等[51]以水稻品种Kitaake为背景,通过基因编辑技术(CRISPR/Cas9)对3个感病基因(OsSWEET11OsSWEET13OsSWEET14)的效应子结合元件(effector binding elements,EBEs)进行编辑修饰,创制了水稻白叶枯病广谱抗性的新种质。Zhou等[52]对隆科638S进行基因编辑,利用CRISPR/Cas9技术敲除了3个感病基因Bsr-d1Pi21ERF922,获得的新种质对白叶枯病和稻瘟病具有广谱抗性,其中Pi21ERF922的敲除可以提高白叶枯病抗性。陈深等[53]研究分析华南水稻白叶枯病菌致病性,发现华南白叶枯病菌主要有IV、V和IX 3种致病型,其中,IV型菌是华南稻区过去的优势致病型,Xa4是其主要的抗性基因,而V型菌和IX型菌具有强毒性,对现在的主栽品种有极高的致病率。目前,V型菌已经演变为华南水稻优势致病菌系,毒性更强的IX型菌发展趋势很快,单个抗性基因或者专一抗性容易被克服,所以华南地区水稻抗白叶枯病育种可利用xa5Xa7Xa23xa34(t)等广谱抗性基因或者多基因聚合,以确保持久稳定的抗性。

5 展望

白叶枯病菌与抗性基因在长期的竞争中协同进化和演变。由于人们长期投放单一抗性基因的水稻品种,打破了病菌和抗性基因的平衡,我国一些地区出现白叶枯病大面积病暴的现象就说明了这一点。如何减轻白叶枯病对水稻生产带来的危害,需要从多方面考虑。

(1)进一步挖掘水稻自身潜力。新病原菌的产生也会有新抗源的存在,直接从自然界中挖掘新的抗源是非常直接和有效的途径。此外,我国丰富的水稻资源长期在独特的自然环境选择下,保留了很多优良性状。一些野生稻资源对白叶枯病达到高抗水平甚至免疫,是水稻抗白叶枯病研究中非常宝贵的基因资源。例如,Xa23来源于我国普通野生稻,对现有的白叶枯病鉴别菌系均表现出完全显性和全生育期高抗。最近新鉴定的Xa47(t)供体材料来自元江普通野生稻。

(2)通过菌群结构的变化检测,合理使用和轮换抗性基因,有效控制病菌。例如陈深等[53]通过对华南地区水稻白叶枯病菌致病性分化检测与分析,发现较强毒性的V型菌已成为华南的主要菌系,同时毒性更强的优势小种R8和IX型菌的上升趋势较快,建议华南地区的白叶枯病抗性基因选用xa5Xa7Xa23xa34(t)等基因。

(3)通过抗性基因的聚合来增强抗病性和拓宽抗谱。白叶枯病的特性符合基因对基因假说,水稻的抗性基因对应着非亲和小种中的无毒基因。当某个水稻品种存在多个抗性基因的聚合,其非亲和小种所对应的无毒基因同时发生突变的概率将大幅降低。但多基因的聚合并非一定能增强抗病能力,Gu等[54]发现,xa5使Xa27介导的Xoo抗性衰减;病原菌(Xoo strain PXO99)对Xa23的诱导表达在xa5纯合(TFIIAγ5V39E/ TFIIAγ5V39E)突变后丧失[55]。因此,如何合理聚合和利用抗性基因是增强抗病能力的关键。此外,对抗性基因分子机制的深入研究,有利于从基因工程的角度对基因进行改造,通过基因编辑选育或者储备抗病材料。

(4)利用或者组合数量抗性基因选育新的抗病品种。如上文所述,水稻白叶枯病抗性基因已报道了49个,有17个基因已经被成功克隆。但由于强大的选择压力和病原体的快速进化,这类主要抗性基因所赋予的抗病性通常只对Xoo物种的某些菌株有效,在育种上有一定的局限性。一般认为,数量抗性具有广谱性和持久性的特点。因此,育种家一直期望将数量抗性基因应用于育种实践。目前,已有70多个与水稻白叶枯病相关的QTL被标记鉴定。这些QTL定位的最终目的是克隆目标数量抗性基因并将其应用于标记辅助育种实践。但由于其复杂的遗传机制和未知的候选基因,这些抗性QTL在水稻中的应用非常有限。因此,新抗性QTL的鉴定和抗性基因的克隆是利用数量抗性来防治水稻白叶枯病的有效策略。

(5)进行新抗性基因的挖掘和已定位抗性基因的克隆。在已报道的水稻白叶枯病抗性基因中,有超过1/3被定位于11号染色体,如 Xa3/Xa26、Xa4、Xa10Xa21等。因此,可以推断水稻11号染色体上应该还有未发掘的抗性基因[56]。目前,已克隆的白叶枯病抗性基因有17个,仅占已报道抗性基因总数的1/3,仍有大量抗性基因未被克隆利用。有些抗性基因由于定位区间过大、候选基因复杂,导致其较难克隆。对此,可结合多种技术手段来克隆目标基因,例如Xa7就是通过图位克隆与突变体筛选相结合克隆到的。随着测序技术的快速发展,多组学技术分析可应用于白叶枯病抗性基因的精细定位以及克隆。深入挖掘和利用抗性基因为解析水稻白叶枯抗病机制以及抗病品种的选育奠定了分子基础。

参考文献

Rajarajeswari N V L, Muralidharan K.

Assessments of farm yield and district production loss from bacterial leaf blight epidemics in rice

Crop Protection, 2006, 25(3):244-252.

[本文引用: 1]

徐羡明, 曾列先, 伍尚忠.

广东野生稻种质资源对白叶枯病的抗性鉴定

广东农业科学, 1986(5):29-31.

[本文引用: 1]

Ogawa T.

Methods and strategy for monitoring race distribution and identification of resistance genes to bacterial leaf blight (Xanthomonas campestris pv. oryzae) in rice

Jarq-Japan Agricultural Research Quarterly, 1993, 27(2):71-80.

[本文引用: 1]

Xing J, Zhang D, Yin F, et al.

Identification and fine-mapping of a new bacterial blight resistance gene, Xa47(t), in G252, an introgression line of Yuanjiang common wild rice (Oryza rufipogon)

Plant Disease, 2021, 105(12):4106-4112.

[本文引用: 1]

Ji C H, Ji Z Y, Liu B, et al.

Xa1 allelic R genes activate rice blight resistance suppressed by interfering TAL effectors

Plant Communications, 2020, 1(4):10087.

[本文引用: 2]

Yoshimura S, Yamanouchi U, Katayose Y, et al.

Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation

Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4):1663-1668.

[本文引用: 1]

Cao Y L, Duan L, Li H J, et al.

Functional analysis of Xa3/Xa26 family members in rice resistance to Xanthomonasoryzae pv. oryzae

Theoretical and Applied Genetics, 2007, 115(7):887-895.

[本文引用: 1]

Hu K M, Cao J B, Zhang J, et al.

Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement

Nature Plants, 2017, 3:17009.

DOI:10.1038/nplants.2017.9      PMID:28211849      [本文引用: 1]

The major disease resistance gene Xa4 confers race-specific durable resistance against Xanthomonas oryzae pv. oryzae, which causes the most damaging bacterial disease in rice worldwide. Although Xa4 has been one of the most widely exploited resistance genes in rice production worldwide, its molecular nature remains unknown. Here we show that Xa4, encoding a cell wall-associated kinase, improves multiple traits of agronomic importance without compromising grain yield by strengthening the cell wall via promoting cellulose synthesis and suppressing cell wall loosening. Strengthening of the cell wall by Xa4 enhances resistance to bacterial infection, and also increases mechanical strength of the culm with slightly reduced plant height, which may improve lodging resistance of the rice plant. The simultaneous improvement of multiple agronomic traits conferred by Xa4 may account for its widespread and lasting utilization in rice breeding programmes globally.

Iyer A S, Mccouch S R.

The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance

Molecular Plant- Microbe Interactions, 2004, 17(12):1348-1354.

[本文引用: 1]

Chen X F, Liu P C, Mei L, et al.

Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice

Plant Communications, 2021, 2(3):100143.

[本文引用: 1]

Tian D S, Wang J X, Zeng X, et al.

The rice TAL effector- dependent resistance protein Xa10triggers cell death and calcium depletion in the endoplasmic reticulum

Plant Cell, 2014, 26(1):497-515.

[本文引用: 1]

Chu Z H, Yuan M, Yao J L, et al.

Promoter mutations of an essential gene for pollen development result in disease resistance in rice

Genes & Development, 2006, 20(10):1250-1255.

[本文引用: 1]

Andaya C B, Ronald P C.

A catalytically impaired mutant of the rice Xa21 receptor kinase confers partial resistance to Xanthomonas oryzae pv.oryzae

Physiological and Molecular Plant Pathology, 2003, 62(4):203-208.

[本文引用: 1]

Wang C L, Zhang X P, Fan Y L, et al.

Xa23 is an executor R protein and confers broad-spectrum disease resistance in rice

Molecular Plant, 2015, 8(2):290-302.

[本文引用: 1]

Liu Q, Yuan M, Zhou Y, et al.

A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice

Plant Cell and Environment, 2011, 34(11):1958-1969.

[本文引用: 1]

Gu K Y, Yang B, Tian D S, et al.

R gene expression induced by a type-III effector triggers disease resistance in rice

Nature, 2005, 435(7045):1122-1125.

[本文引用: 1]

Hutin M, Sabot F, Ghesquière A, et al.

A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice

The Plant Journal, 2015, 84(4):694-703.

[本文引用: 1]

卢源达, 张敦宇, 钟巧芳, .

水稻抗白叶枯病基因Xa47(t)a的克隆及生物信息学分析

分子植物育种. (2023-02-10) [2023- 03-08]. https://kns.cnki.net/kcms/detail//46.1068.S.20230209.1838.016.html.

URL     [本文引用: 1]

Kim S M, Reinke R F, Sundaram R M.

A novel resistance gene for bacterial blight in rice, Xa43(t) identified by GWAS, confirmed by QTL mapping using a bi-parental population

PLoS ONE, 2019, 14(2):e0211775

[本文引用: 2]

Kim S M.

Identification of novel recessive gene Xa44(t) conferring resistance to bacterial blight races in rice by QTL linkage analysis using an SNP chip

Theoretical and Applied Genetics, 2018, 131(12):2733-2743.

[本文引用: 2]

Neelam K, Mahajan R, Gupta V, et al.

High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa

Theoretical and Applied Genetics, 2020, 133:689-705.

[本文引用: 2]

Chen S, Wang C, Yang J, et al.

Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120

Scientific Reports, 2020, 10(1):12642.

[本文引用: 2]

Vikal Y, Chawla H, Sharma R, et al.

Mapping of bacterial blight resistance gene xa8 in rice (Oryza sativa L.)

Indian Journal of Genetics & Plant Breeding, 2014, 74(4):589-595.

[本文引用: 1]

Goto T, Matsumoto T, Furuya N, et al.

Mapping of bacterial blight resistance gene Xa11 on rice chromosome 3

Jarq-Japan Agricultural Research Quarterly, 2009, 43(3):221-225.

[本文引用: 1]

鲍思元, 谭明谱, 林兴华.

水稻抗白叶枯病基因Xa12区间连锁图的构建

亚热带植物科学, 2006, 35(3):1-4.

[本文引用: 1]

Taura S, Ichitani K.

Chromosomal location of xa19, a broad- spectrum rice bacterial blight-resistant gene from XM5, a mutant line from IR24

Plants, 2023, 12(3):602.

[本文引用: 1]

Msami J A, Kawaguchi Y, Ichitani K, et al.

Linkage analysis of rice bacterial blight resistance gene xa20 in XM6, a mutant line from IR24

Breeding Science, 2021, 71(2):144-154.

[本文引用: 1]

Wang C, Tan M P, Xu X, et al.

Localizing the bacterial blight resistance gene, Xa22(t), to a 100-kilobase bacterial artificial chromosome

Phytopathology, 2003, 93(10):1258-1262.

[本文引用: 1]

Wu X M, Li X H, Xu C G, et al.

Fine genetic mapping of xa24, a recessive gene for resistance against Xanthomonas oryzae pv. oryzae in rice

Theoretical and Applied Genetics, 2008, 118(1):185-191.

[本文引用: 1]

Chen H L, Wang S P, Zhang Q F.

New gene for bacterial blight resistance in rice located on chromosome 12 identified from minghui 63, an elite restorer line

Phytopathology, 2002, 92(7):750-754.

DOI:10.1094/PHYTO.2002.92.7.750      PMID:18943271      [本文引用: 1]

Bacterial blight, caused by Xanthomonas oryzae pv. oryzae, is a serious disease of rice worldwide. A new dominant gene for bacterial blight resistance in rice, Xa25(t), was identified from Minghui 63, a restorer line for a number of rice hybrids that are widely cultivated in China. This gene conferred resistance to Philippine race 9 (PXO339) of X. oryzae pv. oryzae in both seedling and adult stages. It was mapped to the centromeric region of chromosome 12, 2.5 cM from a disease resistance gene-homologous sequence, NBS109, and 7.3 cM from a restriction fragment length polymorphism marker, G1314. The genomic location of this gene is similar to the previously identified blast resistance genes, Pi-ta and Pi-ta2.

谭光轩, 任翔, 翁清妹, .

药用野生稻转育后代一个抗白叶枯病新基因的定位

遗传学报, 2004, 31(7):724-729.

[本文引用: 1]

金旭炜, 王春连, 杨清, .

水稻抗白叶枯病近等基因系CBB30的培育及Xa30(t)的初步定位

中国农业科学, 2007, 40(6):1094-1100.

[本文引用: 1]

郑崇珂, 王春连, 于元杰, .

水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位

作物学报, 2009, 35(7):1173-1180.

DOI:10.3724/SP.J.1006.2009.01173      [本文引用: 1]

通过多菌系接种鉴定及抗谱分析,并与目前国际上已知抗白叶枯病基因比较,证明在水稻抗源C4064中含有一个新的抗白叶枯病基因,暂命名为Xa32(t)。应用分离集团分析法(BSA),借助SSR和EST等分子标记,对该基因进行了分子标记定位。通过对F<sub>2</sub>分离群体及F<sub>3</sub>家系单株进行遗传连锁性检测,发现6个位于水稻第11染色体长臂末端的分子标记RM27256、RM27274、RM2064、ZCK24、RM6293和RM5926与Xa32(t)基因连锁。它们与Xa32(t)基因间的遗传距离分别为2.1、1.0、1.0、0.5、1.5和2.6 cM。其中标记RM6293和RM5926位于染色体近端粒一侧,其他4个标记RM27256、RM27274、RM2064和ZCK24位于基因的另一侧。将Xa32(t)定位在水稻第11染色体长臂末端2.0 cM范围内。

Ruan H H, Yan C Q, An D R, et al.

Identifying and mapping new gene xa32(t) for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) from Oryza meyeriana L

.. Acta Agriculturae Boreali-Occidentalis Sinica, 2008, 17(6):170-174.

[本文引用: 1]

Kumar P N, Sujatha K, Laha G S, et al.

Identification and fine-mapping of Xa33, a novel gene for resistance to Xanthomonas oryzae pv. oryzae

Phytopathology, 2012, 102(2):222-228.

[本文引用: 1]

Korinsak S, Sriprakhon S C, Sirithanya P, et al.

Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’

Maejo International Journal of Science and Technology, 2009, 3(2):235-247.

[本文引用: 1]

Chen S, Liu X Q, Zeng L X, et al.

Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv.oryzae

Theoretical and Applied Genetics, 2011, 122(7):1331-1338.

[本文引用: 1]

郭嗣斌, 张端品, 林兴华.

小粒野生稻抗白叶枯病新基因的鉴定与初步定位

中国农业科学, 2010, 43(13):2611-2618.

DOI:10.3864/j.issn.0578-1752.2010.13.001      [本文引用: 1]

【目的】将小粒野生稻(Acc. No. 101133)的抗白叶枯病基因导入栽培稻IR24,并对其进行鉴定和分子标记定位,以便应用于育种实践。【方法】以小粒野生稻和栽培稻IR24的BC2F2群体及其F3、F4家系为材料,利用分离集团分析法(BSA),借助SSR标记对Xa35(t)进行分子标记定位。【结果】通过对抗病基因进行抗谱鉴定和遗传分析,结果表明,该基因对白叶枯病菌株PXO86和PXO99表现感病,而对PXO61、PXO112和PXO339表现抗病,初步将其定位于水稻的第11染色体长臂上,同标记RM144共分离,并位于标记RM7654和RM6293之间,与两标记的遗传距离分别为1.1 cM和0.7 cM。【结论】小粒野生稻(Acc. No. 101133)含有新的抗白叶枯病基因,暂定为Xa35(t)。

苗丽丽, 王春连, 郑崇珂, .

水稻抗白叶枯病新基因的初步定位

中国农业科学, 2010, 43(15):3051-3058.

[本文引用: 1]

Bhasin H, Bhatia D, Raghuvanshi S, et al.

New PCR-based sequence-tagged site marker for bacterial blight resistance gene Xa38 of rice

Molecular Breeding, 2012, 30(1):607-611.

[本文引用: 1]

Zhang F, Zhuo D L, Zhang F, et al.

Xa39,a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv. oryzae in rice

Plant Pathology, 2015, 64(3):568-575.

[本文引用: 1]

Kim S M, Suh J P, Qin Y, et al.

Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.)

Theoretical & Applied Genetics, 2015, 128(10):1-11.

[本文引用: 1]

Busungu C, Taura S, Sakagami J I, et al.

High-resolution mapping and characterization of xa42, a resistance gene against multiple Xanthomonas oryzae pv. oryzae races in rice (Oryza sativa L.)

Breeding Science, 2018, 68(2):188-199.

[本文引用: 1]

张剑霞, 杨子贤, 姜恭好, .

利用DH群体定位白叶枯病抗性QTL

分子植物育种, 2009, 7(3):471-477.

[本文引用: 1]

薛皦, 卢东柏, 刘维, .

优质稻“粤农丝苗”白叶枯病抗性遗传分析及主效QTL qBB-11-1的精细定位

作物学报, 2022, 48(9):2210-2220.

DOI:10.3724/SP.J.1006.2022.12037      [本文引用: 1]

白叶枯病是对水稻危害最大的细菌性病害, 严重危及我国乃至全球粮食安全。挖掘新的抗病基因是改良水稻对白叶枯病抗病性的重要措施。本研究以广东省及华南稻区主栽的优质抗病水稻品种粤农丝苗为材料, 利用抗病品种粤农丝苗和感病品种丽江新团黑谷为亲本构建重组自交系(recombinant inbred lines, RILs)及回交群体, 进行接种鉴定及基因定位分析。遗传分析表明: 粤农丝苗的抗性由不完全显性的白叶枯病抗病基因控制; 重组自交系抗病表型结合重测序结果初定位到一个抗性QTL qBB-11-1, 位于11号染色体长臂末端; 利用片段重叠群分法将qBB-11-1精细定位在InDel标记P89和P54之间, 物理距离约为63 kb, 区间内包含6个候选基因, 且粤农丝苗中的白叶枯病抗性基因可能是未被报道的新基因。这些研究结果对于主栽品种粤农丝苗的抗性基因挖掘与利用将对华南稻区白叶枯病抗性育种具有重要的代表性意义。

Lu L J, Li L Q, Wang C C, et al.

Identification of quantitative trait loci associated with resistance to Xanthomonas oryzae pv. oryzae pathotypes prevalent in South China

The Crop Journal, 2022, 10(2):498-507.

[本文引用: 1]

Shu X Y, Wang A J, Jiang B, et al.

Genome-wide association study and transcriptome analysis discover new genes for bacterial leaf blight resistance in rice (Oryza sativa L.)

BMC Plant Biology, 2021, 21(1):255-267.

[本文引用: 1]

Yang W, Zhou J L, Zhang S H, et al.

Genome-wide association mapping and gene expression analysis reveal the negative role of OsMYB21 in regulating bacterial blight resistance in rice

Rice, 2021, 14(1):58.

DOI:10.1186/s12284-021-00501-z      PMID:34185169      [本文引用: 1]

Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the most devastating diseases in rice all over the world. Due to the diversity and rapid evolution of Xoo, identification and use of the non-race specific quantitative resistance QTLs has been considered the preferred strategy for effective control of this disease. Although numerous QTLs for BB resistance have been identified, they haven't been effectively used for improvement of BB resistance in rice due to their small effects and lack of knowledge on the function of genes underlying the QTLs.In the present study, a genome-wide association study of BB resistance was performed in a rice core collection from South China. A total of 17 QTLs were identified to be associated with BB resistance. Among them, 13 QTLs were newly identified in the present study and the other 4 QTLs were co-localized with the previously reported QTLs or Xa genes that confer qualitative resistance to Xoo strains. Particularly, the qBBR11-4 on chromosome 11 explained the largest phenotypic variation in this study and was co-localized with the previously identified QTLs for BB and bacterial leaf streak (BLS) resistance against diverse strains in three studies, suggesting its broad-spectrum resistance and potential value in rice breeding. Through combined analysis of differential expression and annotations of the predicted genes within qBBR11-4 between two sets of rice accessions selected based on haplotypes and disease phenotypes, we identified the transcription factor OsMYB21 as the candidate gene for qBBR11-4. The OsMYB21 overexpressing plants exhibited decreased resistance to bacterial blight, accompanied with down-regulation of several defense-related genes compared with the wild-type plants.The results suggest that OsMYB21 negatively regulates bacterial blight resistance in rice, and this gene can be a promising target in rice breeding by using the gene editing method. In addition, the potential candidate genes for the 13 novel QTLs for BB resistance were also analyzed in this study, providing a new source for cloning of genes associated with BB resistance and molecular breeding in rice.

Huang B, Xu J Y, Hou M S, et al.

Introgression of bacterial blight resistance genes Xa7, Xa21, Xa22 and Xa23 into hybrid rice restorer lines by molecular marker-assisted selection

Euphytica, 2012, 187(3):449-459.

[本文引用: 1]

Kumar V A, Balachiranjeevi C H, Naik S B, et al.

Marker- assisted introgression of the major bacterial blight resistance gene, Xa21 and blast resistance gene, pi54 into RPHR-1005, the restorer line of the popular rice hybrid, DRRH3

Journal of Plant Biochemistry and Biotechnology, 2016, 25(4):400-409.

[本文引用: 1]

Xu Z Y, Xu X M, Gong Q, et al.

Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice

Molecular Plant, 2019, 12(11):1434-1446.

DOI:S1674-2052(19)30289-8      PMID:31493565      [本文引用: 1]

Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, employs the transcription activator-like effectors (TALEs) to induce the expression of the OsSWEET family of putative sugar transporter genes, which function in conferring disease susceptibility (S) in rice plants. To engineer broad-spectrum bacterial blight resistance, we used CRISPR/Cas9-mediated gene editing to disrupt the TALE-binding elements (EBEs) of two S genes, OsSWEET11 and OsSWEET14, in rice cv. Kitaake, which harbors the recessive resistance allele of Xa25/OsSWEET13. The engineered rice line MS14K exhibited broad-spectrum resistance to most Xoo strains with a few exceptions, suggesting that the compatible strains may contain new TALEs. We identified two PthXo2-like TALEs, Tal5 and Tal7, as major virulence factors in the compatible Xoo strains LN18 and PXO61, respectively, and found that Xoo encodes at least five types of PthXo2-like effectors. Given that PthXo2/PthXo2.1 target OsSWEET13 for transcriptional activation, the genomes of 3000 rice varieties were analyzed for EBE variationsin the OsSWEET13 promoter, and 10 Xa25-like haplotypes were identified. We found that Tal5 and Tal7 bind slightly different EBE sequences in the OsSWEET13 promoter to activate its expression. CRISPR/Cas9 technology was then used to generate InDels in the EBE of the OsSWEET13 promoter in MS14K to creat a new germplasm with three edited OsSWEET EBEs and broad-spectrum resistance against all Xoo strains tested. Collectively, our findings illustrate how to disarm TALE-S co-evolved loci to generate broad-spectrum resistance through the loss of effector-triggered susceptibility in plants.Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.

Zhou Y B, Xu S C, Jiang N, et al.

Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9

Plant Biotechnology Journal, 2021, 20(5):876-885.

DOI:10.1111/pbi.13766      PMID:34890109      [本文引用: 1]

Rice blast and bacterial blight represent two of major diseases having devastating impact on the yield of rice in most rice-growing countries. Developments of resistant cultivars are the most economic and effective strategy to control these diseases. Here, we used CRISPR/Cas9-mediated gene editing to rapidly install mutations in three known broad-spectrum blast-resistant genes Bsr-d1, Pi21, and ERF922, in an indica thermosensitive genic male sterile (TGMS) rice line Longke638S (LK638S). We obtained transgene-free homozygous single or triple mutants in T generations. While all single and triple mutants showed increased resistance to rice blast compared with wild type, the erf922 mutants displayed the strongest blast resistance similar with triple mutants. Surprisingly, we found that Pi21 or ERF922 single mutants conferred enhanced resistance to most of tested bacterial blight. Both resistances in mutants were attribute to the up-regulation of SA- and JA-pathway associated genes. Moreover, phenotypic analysis of these single mutants in paddy fields revealed that there were no trade-offs between resistances and main agricultural traits. Together, our study provides a rapid and effective way to generate rice varieties with resistance to both rice blast and bacterial blight.This article is protected by copyright. All rights reserved.

陈深, 汪聪颖, 苏菁, .

华南水稻白叶枯病菌致病性分化检测与分析

植物保护学报, 2017, 44(2):217-222.

[本文引用: 2]

Gu K Y, Tian D S, Qiu C X, et al.

Transcription activator-like type III effector AvrXa 27 depends on OsTFIIAgamma5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv.oryzae

Molecular Plant Pathology, 2009, 10(6):829-835.

[本文引用: 1]

Yuan M, Ke Y G, Huang R Y, et al.

A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria

eLife, 2016, 5:e19605

[本文引用: 1]

李舟, 杨雅云, 戴陆园, .

水稻白叶枯病抗性基因和相关因子研究利用进展

中国农学通报, 2022, 38(30):91-99.

DOI:10.11924/j.issn.1000-6850.casb2021-0941      [本文引用: 1]

水稻白叶枯病严重制约水稻生产,抗病基因的发掘与利用是目前防治该病害最环保有效的手段。为高效发掘、研究和利用抗白叶枯病基因,本文概述了白叶枯病菌与水稻的互作机制,总结了抗白叶枯病基因的定位与克隆现状并对其功能类型加以分类,归纳了抗病相关因子的研究进展。针对目前抗白叶枯病基因的研究进展缓慢且概述性研究报道相对滞后的现状,提出研究展望,认为应更深入研究水稻抗白叶枯病基因的定位克隆与利用,并大力探究抗病基因与抗病相关因子的协同作用关系。

/